
CONDITIONAL

STATEMENTS

OVERVIEW

OVERVIEW

 Many times we want programs to make decisions

 What drink should we dispense from the vending machine?

 Should we let the user withdraw money from this account?

 We make this choice by looking at values of variables

 When variables meet one condition we do one thing

 When variables do not meet condition we do something else

 To make decisions in a program we need conditional

statements that let us take different paths through code

(c) Prof. John Gauch, Univ. of Arkansas, 2020 2

OVERVIEW

 In Java there are three types of conditional statements:

 The if statement

 The if-else statement

 The switch statement

 Lesson objectives:

 Learn how logical expressions are written

 Learn the syntax and semantics of conditional statements

 Study example programs showing their use

 Complete programming project using conditional statements

(c) Prof. John Gauch, Univ. of Arkansas, 2020 3

CONDITIONAL

STATEMENTS

PART 1

LOGICAL EXPRESSIONS

LOGICAL

EXPRESSIONS

 The fundamental building block of all Java conditional

statements is the logical expression

 Logical expressions always return a Boolean value of

either true or false

 Logical expressions are used to decide what portions of

the program to execute and what to skip over

 Simple logical expressions are of the form:

(data relational_operator data)

 Data terms in logical expressions can be variables,

constants or arithmetic expressions

(c) Prof. John Gauch, Univ. of Arkansas, 2020 5

LOGICAL

EXPRESSIONS

 The Java relational operators are:

< less than

> greater than

<= less than or equal

>= greater than or equal

== equal to

!= not equal to

(c) Prof. John Gauch, Univ. of Arkansas, 2020 6

LOGICAL

EXPRESSIONS

 Examples using numbers:

 (17 < 42) is true

 (42 > 17) is true

 (17 == 42) is false

 (42 != 17) is true

 ((42 - 17) > (42 + 17)) is false

 ((17 * 3) <= (17 + 17 + 17) is true

(c) Prof. John Gauch, Univ. of Arkansas, 2020 7

LOGICAL

EXPRESSIONS

 Examples with variables:

 int a=17, b=42;

 (a < b) is true

 (a >= b) is false

 (a == 17) is true

 (a != b) is true

 ((a + 17) == b) is false

 ((42 – a) < b) is true

(c) Prof. John Gauch, Univ. of Arkansas, 2020 8

LOGICAL

EXPRESSIONS

 Warning: Do not use a single = for checking equality

 If you use = instead of == you will NOT get an error message

but it will return a true/false value you are NOT expecting

 The = operator is only used for data assignment to variables

as we saw in the previous section

 Warning: Do not use =<, =>, =! to compare data values

 You will get a compiler error message if you type these

relational operators in backwards

 Just remember the correct operators <=, >=, != all end with

“equal” just like the phrases “less than or equal”

(c) Prof. John Gauch, Univ. of Arkansas, 2020 9

COMPLEX LOGICAL

EXPRESSIONS

 We can combine simple logical expressions to get
complex logical expressions that are more powerful

 For example: checking the user has entered enough
money AND the vending machine has that item available

 The syntax is: (expression logical_operator expression)

 The two expressions above can either be simple logical
expressions or complex logical expressions

 The Java logical operators are:

&& and

|| or

(c) Prof. John Gauch, Univ. of Arkansas, 2020 10

COMPLEX LOGICAL

EXPRESSIONS

 Truth tables are often be used to enumerate all possible

values of a complex logical expression

 We make columns for all logical expressions

 Each row illustrates one set of input values

 The maximum number of rows is always a power of 2

(c) Prof. John Gauch, Univ. of Arkansas, 2020 11

A B A && B A || B

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

Only true if both

A and B are true
Only true if either

A and B are true

COMPLEX LOGICAL

EXPRESSIONS

 Java evaluates complex logical expressions from left to right

 (exp1 && exp2) will be true if both exp are true

 (exp1 && exp2 && exp3) will be true if all exp are true

 (exp1 || exp2 || exp3) will be true if any exp is true

 Java has a feature called “conditional evaluation” that will

stop the evaluation early in some cases

 (exp1 && exp2) will be false if exp1 is false

 (exp1 || exp2) will be true if exp1 is true

 In both cases, Java does not need to evaluate exp2 because

the answer is already known after looking at exp1

(c) Prof. John Gauch, Univ. of Arkansas, 2020 12

EXAMPLE

int a = 42;

int b = 0;

(a / b > 17) // this will die

(a > 17 * b) // this will work

(a / b > c / d) // this could die

(a*d > c*b) // this will work

((b != 0) && (a / b > 17)) // avoids divide by 0

(c) Prof. John Gauch, Univ. of Arkansas, 2020 13

COMPLEX LOGICAL

EXPRESSIONS

 Complex logical expressions

 ((17 < 42) && (42 < 17)) is false, because second half is false

 ((17 <= 42) || (42 <= 17)) is true, because first half is true

 When float variables x = 3.14 and y = 7.89

 ((x < 4) && (y < 8)) is true, because both halves are true

 ((x > 3) && (y > 8)) is false, because second half is false

 ((x < 4) || (y > 8)) is true, because first half is true

 ((x < 3) || (y < 8)) is true, because second half is true

 ((x > 4) || (y > 8)) is false, because both halves are false

(c) Prof. John Gauch, Univ. of Arkansas, 2020 14

THE NOT OPERATOR

 The not operator in in Java reverses the value of any

logical expression

 Logically “not true” is same as “false”

 Logically “not false” is same as “true”

 The Java syntax for the not operator is: ! expression

 This is a “unary” operator since there is just one logical

expression to the right of the not operator

(c) Prof. John Gauch, Univ. of Arkansas, 2020 15

THE NOT OPERATOR

 Examples with integer variables a = 7 and b = 3

 (a > b) is true ! (a > b) is false

 (a <= b) is false ! (a <= b) is true

 (a == b) is false ! (a == b) is true

 (a != b) is true ! (a != b) is false

(c) Prof. John Gauch, Univ. of Arkansas, 2020 16

THE NOT OPERATOR

 We can often “move the not operation inside” a simple

logical expression

 To do this simplification, we need to remove the ! operator

and “reverse the logic” of the relational operator

 ! (a < b) same as (a >= b)

 ! (a <= b) same as (a > b)

 ! (a > b) same as (a <= b)

 ! (a >= b) same as (a < b)

 ! (a == b) same as (a != b)

 ! (a != b) same as (a == b)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 17

Notice that

the opposite of < is >=

the opposite of > is <=

the opposite of == is !=

THE NOT OPERATOR

 When exp1 and exp2 are simple logical expressions

 ! (exp1 && exp2) is same as (!exp1 || !exp2)

 ! (exp1 || exp2) is same as (!exp1 && !exp2)

 ! (!exp1 || !exp2) is same as (!!exp1 && !!exp2) or (exp1 && exp2)

 ! (!exp1 && !exp2) is same as (!!exp1 || !!exp2) or (exp1 || exp2)

 Hence, there are many different ways to represent the same

logical expression

 Your goal when programming is to choose the simplest logical

expression that represents the relationships you are looking for

(c) Prof. John Gauch, Univ. of Arkansas, 2020 18

THE NOT OPERATOR

 Examples with float variables x = 4.3 and y = 9.2

 !((x < 5) && (y < 10)) is false

 (!(x < 5) || !(y < 10)) is false

 ((x >= 5) || (y >= 10)) is false

 !((x >= 5) || (y >= 10)) is true

 (!(x >= 5) && !(y >= 10)) is true

 ((x < 5) && (y < 10)) is true

(c) Prof. John Gauch, Univ. of Arkansas, 2020 19

To most people, these logical

expressions are the simplest

to read and understand

SUMMARY

 In this section, we have focused on how logical

expressions can be written in Java

 We have seen how relational operators (<, <=, >, >=, ==,

and !=) can be used to create simple logical expressions

 We have seen how logical operators (&& and !!) can be

used to make more complex logical expressions

 Finally, we have seen how the not operator (!) can be used

to reverse the true/false value of logical expressions

(c) Prof. John Gauch, Univ. of Arkansas, 2020 20

DE MORGAN’S LAWS

 We can extend truth tables to study the not operator

 Add new columns showing !A and !B and their use in

complex logical expressions with && and ||

(c) Prof. John Gauch, Univ. of Arkansas, 2020 21

A B !A !B A	&&	B A	||	B !A	&&	!B !A	||	!B

TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE

FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE

FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE

Notice anything

interesting here?

DE MORGAN’S LAWS

 We can extend truth tables to study the not operator

 Add new columns showing !A and !B and their use in

complex logical expressions with && and ||

(c) Prof. John Gauch, Univ. of Arkansas, 2020 22

A B !A !B A	&&	B A	||	B !A	&&	!B !A	||	!B

TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE

FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE

FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE

These columns have opposite values so

! (A || B) is the same as !A && !B

DE MORGAN’S LAWS

 We can extend truth tables to study the not operator

 Add new columns showing !A and !B and their use in

complex logical expressions with && and ||

(c) Prof. John Gauch, Univ. of Arkansas, 2020 23

A B !A !B A	&&	B A	||	B !A	&&	!B !A	||	!B

TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE

FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE

FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE

A similar pattern

occurs here too

DE MORGAN’S LAWS

 We can extend truth tables to study the not operator

 Add new columns showing !A and !B and their use in

complex logical expressions with && and ||

(c) Prof. John Gauch, Univ. of Arkansas, 2020 24

A B !A !B A	&&	B A	||	B !A	&&	!B !A	||	!B

TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE

FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE

FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE

These columns have opposite values so

! (A && B) is the same as !A || !B

DE MORGAN’S LAWS

 From the truth tables above we saw:

! (A || B) is the same as !A && !B

"not (A or B)" is the same as "(not A) and (not B)”

! (A && B) is the same as !A || !B

"not (A and B)" is the same as "(not A) or (not B)”

 These rules are known as “De Morgan’s Laws”

 We can use this rule to simplify a complex logical expression
by “moving the not operation inside”

 We can also simplify !A and !B by “reversing the logic” of the
relational operator

 The final result is a statement that is logically equivalent to
the initial statement and often easier to read / understand

(c) Prof. John Gauch, Univ. of Arkansas, 2020 25

DE MORGAN’S LAWS

 To apply De Morgan’s Laws, we must change the logical

operator and the expressions

 The && operator changes into ||

 The || operator changes into &&

 The ! is applied to both expressions

 Two not operators side by side cancel each other out so

they can be removed without changing the expression

 “!! true” is equal to “! false” which is equal to “true”

(c) Prof. John Gauch, Univ. of Arkansas, 2020 26

CONDITIONAL

STATEMENTS

PART 2

IF STATEMENTS

THE IF STATEMENT

 Sometimes we want to selectively execute a block of code

 The Java syntax of the if statement is:

if (logical expression)

{

// Block of code to execute if expression is true

}

 When expression is true, the block of code is executed

 When expression is false, the block of code is skipped

(c) Prof. John Gauch, Univ. of Arkansas, 2020 28

THE IF STATEMENT

 Programming style suggestions:

 The block of code should be indented 3-4 spaces to aid

program readability

 If the block of code is only one line long, we can omit the curly

brackets { } and shorten the length of the program

 Never put a semi-colon directly after the Boolean

expression in an if statement

 The empty statement between) and ; will be selectively

executed based on the logical expression value

 The block of code directly below if statement will always be

executed, which is probably not what you intended

(c) Prof. John Gauch, Univ. of Arkansas, 2020 29

THE IF STATEMENT

 We can visualize the program’s if statement decision

process using a “flow chart” diagram

(c) Prof. John Gauch, Univ. of Arkansas, 2020 30

Logical

expression

Block of code

true

false

THE IF STATEMENT

 If the logical expression is true, we take one path through

the diagram (executing the block of code)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 31

Logical

expression

Block of code

true

false

THE IF STATEMENT

 If the logical expression is false, we take a different path

through the diagram (skipping over the block of code)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 32

Logical

expression

Block of code

true

false

THE IF STATEMENT

// Simple if statement

int a = scanner.nextInt();

int b = scanner.nextInt();

if (a < b)

{

System.out.println(“A is smaller than B”);

}

 Depending on what data values the user enters, the print

statement will executed or skipped

(c) Prof. John Gauch, Univ. of Arkansas, 2020 33

THE IF STATEMENT

// One line block of code

int a = scanner.nextInt();

int b = scanner.nextInt();

if (a == b)

System.out.println(“A is equal to B”);

 This is similar to the previous example but we removed the

curly brackets to shorten the program

(c) Prof. John Gauch, Univ. of Arkansas, 2020 34

THE IF STATEMENT

// Block of code that never executes

if (1 == 2)

{

System.out.println(“This code will never execute”);

}

// Block of code that always executes

if (true)

{

System.out.println(“This code will always execute”);

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 35

THE IF-ELSE

STATEMENT

 Sometimes we need to handle two alternatives in our code

 The Java syntax of the if-else statement is:

if (logical expression)

{

// Block of code to execute if expression is true

}

else

{

// Block of code to execute if expression is false

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 36

THE IF-ELSE

STATEMENT

 Programming style suggestions:

 Type the “if line” and the “else line” and the { } brackets so

they are vertically aligned with each other

 Do not put a semi-colon after the “if line” or the “else line” or

you will get very strange run time errors

 The two blocks of code should be indented 3-4 spaces to aid

program readability

 If either block of code is only one line long, we can omit the

curly brackets { } and shorten the length of the program

(c) Prof. John Gauch, Univ. of Arkansas, 2020 37

THE IF-ELSE

STATEMENT

 We can visualize the program’s if-else statement decision

process using a “flow chart” diagram

(c) Prof. John Gauch, Univ. of Arkansas, 2020 38

Logical

expression

Block of code

executed if true

truefalse

Block of code

executed if false

THE IF-ELSE

STATEMENT

 If the logical expression is true, we take one path through

the diagram (executing one block of code)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 39

Logical

expression

Block of code

executed if true

truefalse

Block of code

executed if false

THE IF-ELSE

STATEMENT

 If the logical expression is false, we take one path through

the diagram (executing the other block of code)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 40

Logical

expression

Block of code

executed if true

truefalse

Block of code

executed if false

THE IF-ELSE

STATEMENT

// Simple if-else example

if ((a > 0) && (b > 0))

{

c = a / b;

a = a - c;

}

else

{

c = a * b;

a = b + c;

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 41

THE IF-ELSE

STATEMENT

// Ugly if-else example

if (a < b) {

c = a * 3;

a = b - c; } else

a = c + 5;

// Even uglier example

if (a < b) { c = a * 3; a = b - c; } else a = c + 5;

 This code is technically correct, but it is difficult for

humans to read and understand the intended logic

(c) Prof. John Gauch, Univ. of Arkansas, 2020 42

THE IF-ELSE

STATEMENT

// Pretty if-else example

if (a < b)

{

c = a * 3;

a = b - c;

}

else

a = c + 5;

 This is the same portion of code with proper indentation

so it is much easier for humans to read and understand

(c) Prof. John Gauch, Univ. of Arkansas, 2020 43

Notice that the else

part is only one line

long so we omitted

the curly brackets

GRADE CALCULATION

EXAMPLE

 How can we convert test scores to letter grades?

 We must read test scores with values between 0..100

 We want to output corresponding A,B,C,D,F letter grades

 To find the letter grade, we need a series of if statements

 If score is between 90..100 output A

 If score is between 80..89 output B

 If score is between 70..79 output C

 If score is between 60..69 output D

 If score is between 0..59 output F

(c) Prof. John Gauch, Univ. of Arkansas, 2020 44

GRADE CALCULATION

EXAMPLE

 It is very important to develop and test programs

incrementally, just a few lines at a time

 Start by writing comments that describe the steps you want

the program to take

 Then add some code under each comment that

implements that part of the program

 Then compile and run the partial program to make sure

there are no syntax errors, and that the part you have

implemented is working correctly

 Continue adding small pieces of code, compiling and

testing the program until it is complete

(c) Prof. John Gauch, Univ. of Arkansas, 2020 45

GRADE CALCULATION

EXAMPLE

// Program to convert test scores into letter grades

public static void main(String[] args)

{

// Local variable declarations

// Read test score

// Calculate letter grade

// Print output

return 0;

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 46

First write comments in

the main program to

explain our approach

This will compile and run

but not do anything

GRADE CALCULATION

EXAMPLE

// Program to convert test scores into letter grades

public static void main(String[] args)

{

// Local variable declarations

char Grade = '?' ;

// Read test score

System.out.print(“Enter test score: ”);

float Score = scanner.nextFloat();

Systen.out.println(“Score: ” + Score);

(c) Prof. John Gauch, Univ. of Arkansas, 2020 47

Next add code to the

main program to get the

input test score

This will compile and run

but only read and print

the input test score

GRADE CALCULATION

EXAMPLE

…

// Calculate letter grade

if ((Score >= 90) && (Score <= 100))

Grade = 'A';

// Print output

System.out.println(“Grade: ” + Grade);

(c) Prof. John Gauch, Univ. of Arkansas, 2020 48

Next, we add more code

calculate one letter grade

and then print output

This will compile and run

but it will only calculate A

grades correctly

GRADE CALCULATION

EXAMPLE

…

// Calculate letter grade

if ((Score >= 90) && (Score <= 100))

Grade = 'A';

if ((Score >= 80) && (Score < 90))

Grade = 'B';

if ((Score >= 70) && (Score < 80))

Grade = 'C';

if ((Score >= 60) && (Score < 70))

Grade = 'D';

if ((Score >= 0) && (Score < 60))

Grade = 'F';

…

(c) Prof. John Gauch, Univ. of Arkansas, 2020 49

Finally, we add more

code to calculate the

remaining letter grades

This will compile and

run and hopefully

calculate all grades

GRADE CALCULATION

EXAMPLE

 We should start testing with “expected” input values

 Try test scores that we know are in the middle of the

A,B,C,D,F letter ranges (e.g. 95,85,75,65,55)

 Try input values that are “on the border” of the letter grade

ranges to make sure we have our “>=” and “>” conditions

right (e.g. 79,80,81)

 We should then test “unexpected” input values

 Try entering test values that are outside the 0..100 range

to see what the program will output

 Finally, see what happens if the user enters something

other than an integer test score (e.g. 3.14159, “hello”)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 50

CODE DEMO

Compile and run Grade1.java

Compile and run Day1.java

Compile and run Bank1.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 51

SUMMARY

 In this section we have studied the syntax and use of the

Java if statement and the if-else statement

 We have also seen how flow chart diagrams can be used

to visualize different execution paths in a program

 Finally, we showed how if statements can be used to

implement a simple grade calculation program

(c) Prof. John Gauch, Univ. of Arkansas, 2020 52

CONDITIONAL

STATEMENTS

PART 3

NESTED IF STATEMENTS

NESTED IF

STATEMENTS

 We can have two or more if statements inside each other

to check multiple conditions

 These are called nested if statements

 Use indentation to reflect nesting and aid readability

 Typically indent 3-4 spaces or one tab per nesting level

 Need to be careful when matching up { } brackets

 This way you can decipher the nesting of conditions

(c) Prof. John Gauch, Univ. of Arkansas, 2020 54

NESTED IF

STATEMENTS

if (logical expression1)

{

if (logical expression2)

{

// Statements to execute if expressions1 and expression2 are true

}

else

{

// Statements to execute if expression1 true and expression2 false

}

}

else

{

// Statements to execute if expression1 false

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 55

NESTED IF

STATEMENTS

// Simple nested if example

int a = scanner.nextInt();

int b = scanner.nextInt();

if (a < b)

{

System.out.println(“A is smaller than B”);

if ((a > 0) && (b > 0))

System.out.println(“A and B are both positive”);

else

System.out.println(“A or B or both are negative”);

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 56

NESTED IF

STATEMENTS

// Ugly nested if example

if (a > 0) {

if (b < 0) {

a = 3 * b;

c = a + b; } }

else {

a = 2 * a;

c = b / a; }

(c) Prof. John Gauch, Univ. of Arkansas, 2020 57

It is hard to see what

if statement the else

code goes with

NESTED IF

STATEMENTS

// Pretty nested if example

if (a > 0)

{

if (b < 0)

{

a = 3 * b;

c = a + b;

}

}

else

{

a = 2 * a;

c = b / a;

}
(c) Prof. John Gauch, Univ. of Arkansas, 2020 58

Now we can see the

else goes with the

first if statement

NESTED IF

STATEMENTS

 We can use nested if statements to calculate grades with

fewer comparison operations then the previous example

 The key is to make use of what we know is true when we

go into the “else” block of code and not test this again

if (Score >= 90)

Grade = 'A';

else

{

…

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 59

We know Score < 90 so we do

not need to test for this again

NESTED IF

STATEMENTS

if (Score >= 90)

Grade = 'A';

else

{

if (Score >= 80)

Grade = ‘B';

else

{

…

}

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 60

We know Score < 80 so we do

not need to test for this again

We also know Score < 90 so

the score is in the B range

NESTED IF

STATEMENTS

if (Score >= 90)

Grade = 'A';

else if (Score >= 80)

Grade = 'B';

else if (Score >= 70)

Grade = 'C';

else if (Score >= 60)

Grade = 'D';

else if (Score >= 0)

Grade = 'F’;

(c) Prof. John Gauch, Univ. of Arkansas, 2020 61

Since each else block is only

one line long we can omit the

curly brackets to save space

We can also line up all of the

“else if” statements with the

original if statement

BOOLEAN VARIABLES

 In Java we can store true/false values in Boolean variables

 The constants true and false can be used to initialize

boolean variables

 boolean Done = true;

 boolean Quit = false;

 Boolean expressions can also be used to initialize

boolean variables

 int a = 2, b = 3;

 boolean Positive = (a >= 0);

 boolean Negative = (b < 0);

(c) Prof. John Gauch, Univ. of Arkansas, 2020 62

BOOLEAN VARIABLES

 Boolean variables and true/false constants can also be

used in logical expressions

 (Done == true) is true

 (Done) is true

 (Quit != true) is true

 (!Quit) is true

 (Done == Quit) is false

 (true == Positive) is true

 ((a < b) == false) is false

 (Negative) is false

(c) Prof. John Gauch, Univ. of Arkansas, 2020 63

BOOLEAN VARIABLES

 Boolean variables are often used for status flags

 Set status flag to initial value

 Test to see if certain condition occurs

 Update status flag when necessary

bool Positive = true;

if (a < 0) Positive = false;

if (b < 0) Positive = false;

if (c < 0) Positive = false;

// OR we could do this in one line

if ((a<0) || (b<0) || (c<0)) Positive = false;

(c) Prof. John Gauch, Univ. of Arkansas, 2020 64

BOOLEAN VARIABLES

 Printing Booleans will output true or false

 System.out.println(1==1) will print true

 System.out.println(1==2) will print false

 Boolean values can also be read from user

 boolean value = scanner.nextBoolean();

 If “true” is entered value is set to true

 If “false” is entered value is set to false

 Entering anything else will not work

(c) Prof. John Gauch, Univ. of Arkansas, 2020 65

PRIME NUMBER

EXAMPLE

 How can we test a number to see if it is prime?

 We are given numerical values between 1..100

 We need to see if it has any factors besides 1 and itself

 If no factors found then number is prime

 We need some nested if statements

 Test if input number is between 1..100

 If so, then test if 2,3,5,7 are factors of input number

 Then print out “prime” or “not prime”

(c) Prof. John Gauch, Univ. of Arkansas, 2020 66

PRIME NUMBER

EXAMPLE

 How can we test a if F is a factor of N?

 By definition “A factor of N is an integer F that may be

multiplied by some other integer to produce N”

 N = F * V for some integer V

 N / F = V with no remainder

 (F * (N / F) == N) true if F a factor

 (N % F == 0) true if F a factor

• To be a prime factor, F can not equal N

• ((N != F) && (N % F == 0))

(c) Prof. John Gauch, Univ. of Arkansas, 2020 67

PRIME NUMBER

EXAMPLE

// Check for prime numbers using a factoring approach

public static void main(String[] args)

{

// Local variable declarations

// Read input parameters

// Check input is valid

// Check if number is prime

// Print output

return 0;

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 68

First we write comments in

the main program to

explain the steps in our

approach

PRIME NUMBER

EXAMPLE

// Check for prime numbers using a factoring approach

public static void main(String[] args)

{

// Local variable declarations

int Number = 0;

bool Prime = true;

// Read input parameters

System.out.print(“Enter input [1..100]:”)

Number = scanner.nextInt();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 69

Then we initialize

variables and read

user input

PRIME NUMBER

EXAMPLE

…

// Check input is valid

if ((Number < 1) || (Number > 100))

System.out.println(“Error: Number is out of range”);

else

{

// Check if number is prime

// Print output

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 70

Next we add code to

check if input value is

outside the valid range

PRIME NUMBER

EXAMPLE

…

// Check input is valid

if ((Number >= 1) && (Number <= 100))

{

// Check if number is prime

// Print output

}

else

System.out.println(“Error: Number is out of range”);

(c) Prof. John Gauch, Univ. of Arkansas, 2020 71

Another option is to

add code to verify the

input value is inside

the valid range

PRIME NUMBER

EXAMPLE

…

// Check if number is prime

if (Number == 1) Prime = false;

if ((Number != 2) && (Number % 2 == 0)) Prime = false;

if ((Number != 3) && (Number % 3 == 0)) Prime = false;

if ((Number != 5) && (Number % 5 == 0)) Prime = false;

if ((Number != 7) && (Number % 7 == 0)) Prime = false;

…

(c) Prof. John Gauch, Univ. of Arkansas, 2020 72

Next we check to

see if the number

has any factors

PRIME NUMBER

EXAMPLE

…

// Print output

if (Prime)

System.out.println(”Number ”+ Number + ” IS prime”);

else

System.out.println(”Number ”+ Number +” is NOT prime”);

…

(c) Prof. John Gauch, Univ. of Arkansas, 2020 73

Finally we print a

message saying

if the number is a

prime or not

PRIME NUMBER

EXAMPLE

 How should we test the prime number program?

 Test the range checking code by entering values “on the

border” of the input range (e.g. 0,1,2 and 99,100,101)

 Test program with several values we know are prime

 Test program with several values we know are not prime

 To be really compulsive we could test all values between

1..100 and compare to known prime numbers

 What is wrong with this program?

 It only works for inputs between 1..100

 It will not “scale up” easily if we extend this input range

(c) Prof. John Gauch, Univ. of Arkansas, 2020 74

CODE DEMO

Compile and run Prime1.java

Compile and run Grade2.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 75

SUMMARY

 In this section we showed how if statements and if-else

statements can be nested inside each other to create more

complex paths through a program

 We also showed how proper indenting is important to read

and understand programs with nested if statements

 We have seen how Boolean variables can be used to store

true/false values in a program

 Finally, we used an incremental approach to create a

program for checking the factors of input numbers to see

if they are prime or not

(c) Prof. John Gauch, Univ. of Arkansas, 2020 76

CONDITIONAL

STATEMENTS

PART 4

SWITCH STATEMENTS

SWITCH STATEMENTS

 The switch statement is convenient for handling multiple

branches based on the value of one decision variable

 The program looks at the value of the decision variable

 The program jumps directly to the matching case label

 The statements following the case label are executed

 Special features of the switch statement:

 The “break” command at the end of a block of statements

will make the program jump to the end of the switch

 The program executes the statements after the “default”

label if no other cases match the decision variable

(c) Prof. John Gauch, Univ. of Arkansas, 2020 78

SWITCH STATEMENTS

switch (decision variable)

{

case value1 :

// Statements to execute if variable equals value1

break;

case value2:

// Statements to execute if variable equals value2

break;

...

default:

// Statements to execute if variable not equal to any value

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 79

SWITCH STATEMENTS

int Age = scanner.nextInt();

switch (Age)

{

case 0:

System.out.println(“Stop being such a baby”);

break;

case 7:

System.out.println(“Are you going to first grade now?”);

break;

(c) Prof. John Gauch, Univ. of Arkansas, 2020 80

The switch statement will jump

here if Age equals 0

SWITCH STATEMENTS

case 21:

System.out.println(“Lets go for a drink”);

break;

case 42:

System.out.println(“This is the ultimate age”);

break;

default:

System.out.println(“Your age is boring”);

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 81

The break command jumps to

the end of the switch statement

SWITCH STATEMENTS

char Choice = scanner.next().charAt(0);

switch (Choice)

{

case ‘d’: case ‘D’:

System.out.println(“Deposit money in bank”);

break;

case ‘w’: case ‘W’:

System.out.println(“Withdraw money from bank”);

break;

(c) Prof. John Gauch, Univ. of Arkansas, 2020 82

The program will execute this

code only if Choice is ‘d’ or ‘D’

SWITCH STATEMENTS

case ‘t’: case ‘T’:

System.out.println(“Transfer money between accounts”);

break;

case ‘q’: case ‘Q’:

System.out.println(“Quit banking program”);

break;

default:

System.out.println(“Invalid command”);

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 83

SWITCH STATEMENTS

 The main advantage of switch statement over a sequence

of if-else statements is that it is much faster

 Jumping to blocks of code is based on a lookup table

instead of a sequence of variable comparisons

 The main disadvantage of switch statements is that the

decision variable must be an integer or a character

 We can not use a switch with a float or string decision

variable or with complex logical expressions

(c) Prof. John Gauch, Univ. of Arkansas, 2020 84

MENU EXAMPLE

 How can we create a user interface for banking?

 Assume user selects commands from a menu

 We need to see read and process user commands

 We can use a switch statements to handle menu

 Ask user for numerical code for user command

 Jump to the code to process that banking operation

 Repeat until the user quits the application

(c) Prof. John Gauch, Univ. of Arkansas, 2020 85

MENU EXAMPLE

// Simulate bank deposits and withdrawals

public static void main(String[] args)

{

// Local variable declarations

// Print command prompt

// Read user input

// Handle banking command

return 0;

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 86

First we write comments in

the main program to

explain our approach

MENU EXAMPLE

// Simulate bank deposits and withdrawals

public static void main(String[] args)

{

// Local variable declarations

int Command = 0;

float Money = 0;

float Balance = 100;

(c) Prof. John Gauch, Univ. of Arkansas, 2020 87

Next we declare and

initialize variables

MENU EXAMPLE

// Simulate bank deposits and withdrawals

public static void main(String[] args)

{

…

// Print command prompt

System.out.println(

“Enter command number:\n” +

“ 0 - quit\n” +

“ 1 - deposit money\n” +

“ 2 - withdraw money\n” +

“ 3 - print balance\n”);

(c) Prof. John Gauch, Univ. of Arkansas, 2020 88

Next we print the

command prompt

MENU EXAMPLE

// Simulate bank deposits and withdrawals

public static void main(String[] args)

{

…

// Read user input

int Command = scanner.nextInt();

(c) Prof. John Gauch, Univ. of Arkansas, 2020 89

Next we add code to

read the user input

MENU EXAMPLE

// Handle banking command

switch (Command)

{

case 0: // Quit code

break;

case 1: // Deposit code

break;

case 2: // Withdraw code

break;

case 3: // Print balance code

break;

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 90

Then we add the

skeleton of the switch

statement to handle

the user command

MENU EXAMPLE

case 0: // Quit code

System.out.println(“See you later!”);

break;

case 1: // Deposit code

System.out.println(“Enter deposit:”);

Money = scanner.nextFloat();

Balance = Balance + Money;

break;

(c) Prof. John Gauch, Univ. of Arkansas, 2020 91

Next we add code to

perform the banking

operations

MENU EXAMPLE

case 2: // Withdraw code

System.out.println(“Enter withdrawal:”);

Money = scanner.nextFloat();

Balance = Balance - Money;

break;

case 3: // Print balance code

System.out.println(“Current balance = ” + Balance);

break;

…

(c) Prof. John Gauch, Univ. of Arkansas, 2020 92

Some error checking

should be added later

MENU EXAMPLE

 First, we should test program with “normal” inputs

 Try entering all valid menu commands

 Try variety of deposit/withdraw amounts

 Then, we should test with “abnormal” inputs

 What happens if we enter an invalid menu command?

 What happens if we enter a negative input value?

 What happens if the withdraw amount is larger then the

account balance?

 If we find problems, we should fix them or document them

(c) Prof. John Gauch, Univ. of Arkansas, 2020 93

IMPROVED MENU

EXAMPLE

 To improve the menu, we can use letters that match the

commands d=deposit, w=withdrawal instead of numbers

 Print letter based command menu

 Read in letters from user

 Convert switch cases to letters

 To avoid negative balances, we must check to see if there

is enough money in account before doing the withdrawal

 This requires an if statement inside the switch

 Only do the withdrawal if the amount is valid

 Print error message if withdrawal amount is invalid

(c) Prof. John Gauch, Univ. of Arkansas, 2020 94

IMPROVED MENU

EXAMPLE

// Print command prompt

System.out.println(

“Enter command character:\n” +

“ q / Q - quit\n” +

“ d / D - deposit money\n” +

“ w / W - withdraw money\n” +

“ p / P - print balance\n”);

// Read user input

char Command = scanner.next().charAt(0);

(c) Prof. John Gauch, Univ. of Arkansas, 2020 95

Read single letter

for user command

IMPROVED MENU

EXAMPLE

// Handle banking command

switch (Command)

{

case ‘q’: case ‘Q’: // Quit code

break;

case ‘d’: case ‘D’: // Deposit code

break;

case ‘w’: case ‘W’: // Withdraw code

break;

case ‘p’: case ‘P’: // Print balance code

break;

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 96

Our new switch

statement will use

single character to

select a command

IMPROVED MENU

EXAMPLE

case ‘w’: case ‘W’: // Withdraw code

System.out.println(“Enter withdrawal:”);

Money = scanner.nextFloat();

if ((Money <= Balance) && (Money > 0))

Balance = Balance - Money;

else

System.out.println(“Can not withdraw money”);

break;

(c) Prof. John Gauch, Univ. of Arkansas, 2020 97

Do error checking

before withdrawing

the money

CODE DEMO

Compile and run Bank2.java

Compile and run Day2.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 98

SOFTWARE

ENGINEERING TIPS

 There are many ways to write conditional code

 Your task is to find the simplest correct code for the task

 Make your code easy to read and understand

 Indent your program to reflect the nesting of blocks of code

 Develop your program incrementally

 Compile and run your code frequently

 Anticipate potential user input errors

 Check for normal and abnormal input values

(c) Prof. John Gauch, Univ. of Arkansas, 2020 99

SOFTWARE

ENGINEERING TIPS

 Common programming mistakes

 Missing or unmatched () brackets in logical expressions

 Missing or unmatched { } brackets in conditional statement

 Missing break statement at bottom of switch cases

 Never use & instead of && in logical expressions

 Never use | instead of || in logical expressions

 Never use = instead of == in logical expressions

if (a==5) // what we want to do

if (a=5) // will do assignment statement

if (5=a) // will get compiler error message

 Never use “;” directly after logical expression

(c) Prof. John Gauch, Univ. of Arkansas, 2020 100

SUMMARY

 In this section we have studied the syntax and use of the

Java switch statement

 We also showed an example where a switch statement

was used to create a menu-based banking program

 Finally, have discussed several software engineering tips

for creating and debugging conditional programs

(c) Prof. John Gauch, Univ. of Arkansas, 2020 101

