
ITERATIVE

STATEMENTS

OVERVIEW

OVERVIEW

▪ We often need to do repetitive calculations in order to

solve specific problems

▪ Example: calculate the average GPA of all students at UofA

▪ Humans are typically very slow and inaccurate doing this

▪ Fortunately computers can do this quickly and correctly

▪ To perform repetitive calculations in a program we need

iterative statements that let us execute the same block of

code multiple times

(c) Prof. John Gauch, Univ. of Arkansas, 2020 2

OVERVIEW

▪ Java has three kinds of iterative statements

▪ The while loop

▪ The for loop

▪ The do-while loop

▪ Lesson objectives:

▪ Learn the syntax and semantics of these iterative statements

▪ Study example programs showing their use

▪ Complete programming project using iterative statements

(c) Prof. John Gauch, Univ. of Arkansas, 2020 3

ITERATIVE

STATEMENTS

PART 1

WHILE LOOPS

WHILE LOOPS

▪ A while loop iteratively executes a block of code

▪ We need to specify the following:

▪ The initialization code to execute before the loop

▪ The logical expression for continuing iteration

▪ The block of code to be repeated inside the loop

▪ The program will execute block of code repeatedly as long

as the while condition remains true

▪ The code directly after the loop is executed when the while

condition becomes false

(c) Prof. John Gauch, Univ. of Arkansas, 2020 5

WHILE LOOPS

▪ The Java syntax of the while loop is:

// initialization statement

while (logical expression)

{

 // block of statements to be repeated

 // update variables in logical expression

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 6

WHILE LOOPS

▪ We can visualize the program’s while loop decision

process using a “flow chart” diagram

(c) Prof. John Gauch, Univ. of Arkansas, 2020 7

Logical

expression

Logical

expression
Block of codeBlock of code

true

false

WHILE LOOPS

▪ If the logical expression is true, we take one path through

the diagram (executing the block of code one time)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 8

Logical

expression

Logical

expression
Block of codeBlock of code

true

false

WHILE LOOPS

▪ If the logical expression is still true, we follow the same

path (executing the block of code again)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 9

Logical

expression

Logical

expression
Block of codeBlock of code

true

false

WHILE LOOPS

▪ When the logical expression is false, we take a different

path through the diagram (skipping the block of code)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 10

Logical

expression

Logical

expression
Block of codeBlock of code

true

false

COUNTING LOOPS

▪ We can use a counting loop to perform some calculations

a fixed number of times

▪ To do this we need to do the following:

▪ Initialize the loop counter

▪ While counter has NOT reached desired value

• Perform some calculations

• Increment the loop counter

• Check the loop counter again

(c) Prof. John Gauch, Univ. of Arkansas, 2020 11

COUNTING LOOPS

Counting loop example:

// Initialize counter

int Count = 0;

// Loop checking counter

while (Count < 10)

{

 // Perform some calculations

 System.out.println(Count + " squared = " + Count*Count);

 // Increment counter

 Count = Count + 1;

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 12

COUNTING LOOPS

Counting loop output:

0 squared = 0

1 squared = 1

2 squared = 4

3 squared = 9

4 squared = 16

5 squared = 25

6 squared = 36

7 squared = 49

8 squared = 64

9 squared = 81

(c) Prof. John Gauch, Univ. of Arkansas, 2020 13

COUNTING LOOPS

Some observations about this counting loop example:

▪ The while loop will execute the print statement 10 times

and print Count values from 0,1,2,3,4,5,6,7,8,9

▪ At the bottom of the 10th iteration, we increment Count

from 9 to 10, and the while condition becomes false, so

the loop will stop executing

▪ After the while loop, the Count variable is equal to 10

(c) Prof. John Gauch, Univ. of Arkansas, 2020 14

COUNTING LOOPS

Another counting loop example:

// Initialize counter

int Number = 1;

// Loop checking counter

while (Number <= 10)

{

 // Perform some calculations

 System.out.println(Number + " halved = ” + Number / 2);

 // Increment counter

 Number = Number + 1;

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 15

COUNTING LOOPS

Counting loop output:

1 halved = 0

2 halved = 1

3 halved = 1

4 halved = 2

5 halved = 2

6 halved = 3

7 halved = 3

8 halved = 4

9 halved = 4

10 halved = 5

(c) Prof. John Gauch, Univ. of Arkansas, 2020 16

Notice that we are doing

integer division, so the

fractional part is discarded

5 / 2 = 2 instead of 2.5

COUNTING LOOPS

Some observations about this counting loop example:

▪ The while loop will execute the print statement 10 times

and print Number values from 1,2,3,4,5,6,7,8,9,10

▪ At the bottom of the 10th iteration, we increment Number

from 10 to 11, and the while condition becomes false, so

the loop will stop executing

▪ After the while loop, the Number variable is equal to 11

(c) Prof. John Gauch, Univ. of Arkansas, 2020 17

COUNTING LOOPS

// Zero iterations loop

int Value = 11;

while (Value <= 7)

{

 System.out.println(Value + " doubled = ” + Value * 2);

 Value = Value + 1;

}

▪ This while loop will execute the block of code zero times

because the logical expression is false before loop starts

(c) Prof. John Gauch, Univ. of Arkansas, 2020 18

COUNTING LOOPS

// User controlled counting loop

int Value = 0;

int StopValue = scanner.nextInt();

while (Value <= StopValue)

{

 System.out.println(Value + " doubled = ” + Value * 2);

 Value = Value + 1;

}

▪ This program will read the value of StopValue from the

user and will execute the while loop StopValue+1 times

(c) Prof. John Gauch, Univ. of Arkansas, 2020 19

COUNTING LOOPS

Counting loop output:

5

0 doubled = 0

1 doubled = 2

2 doubled = 4

3 doubled = 6

4 doubled = 8

5 doubled = 10

(c) Prof. John Gauch, Univ. of Arkansas, 2020 20

This is the user

input for StopValue

The print statement in the

while loop is executed

StopValue+1 times

CONDITIONAL LOOPS

▪ We often need to vary the number of loop iterations based

on the values of one or more variables

▪ Conditional loops allow us to process data until given

situation arises

▪ We need to do the following:

▪ Initialize condition variables

▪ While the condition remains TRUE

• Perform desired operations

• Update condition variables

(c) Prof. John Gauch, Univ. of Arkansas, 2020 21

CONDITIONAL LOOPS

// Conditional loop example

int Amt = 42;

int Cnt = 0;

while (Amt > 0)

{

 System.out.println(Amt + " halved = ” + Amt / 2);

 Amt = Amt / 2;

 Cnt = Cnt+1;

}

▪ This conditional loop will divide the Amt variable by 2 over

and over again until Amt becomes equal to zero

(c) Prof. John Gauch, Univ. of Arkansas, 2020 22

CONDITIONAL LOOPS

Conditional loop output:

 42 halved = 21

 21 halved = 10

 10 halved = 5

 5 halved = 2

 2 halved = 1

 1 halved = 0

(c) Prof. John Gauch, Univ. of Arkansas, 2020 23

Amt = 0 after this is printed, so

the conditional loop will stop

CONDITIONAL LOOPS

// Another conditional loop example

int Val = 54;

int Cnt = 0;

while ((Val % 3) == 0)

{

 System.out.println("Val: " + Val + " Cnt: " + Cnt);

 Val = Val / 3;

 Cnt = Cnt + 1;

}

 System.out.println("Val: " + Val + " Cnt: " + Cnt);

▪ This conditional loop will calculate the number of times

that the number 3 is a factor of Val

(c) Prof. John Gauch, Univ. of Arkansas, 2020 24

This statement is true if

Val is evenly divided by 3

CONDITIONAL LOOPS

Conditional loop output:

Val: 54 Cnt: 0

Val: 18 Cnt: 1

Val: 6 Cnt: 2

Val: 2 Cnt: 3

(c) Prof. John Gauch, Univ. of Arkansas, 2020 25

After the conditional loop finishes,

Cnt=3 tells us the number of times

that 3 is a factor of 54

CODE DEMO

Compile and run Loan.java

Compile and run Loan2.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 26

CONDITIONAL LOOPS

▪ One special case for conditional loops is to read and

process data from the user until they enter a sentinel

value to signal the end of the input

▪ The basic approach is to:

▪ Prompt user for desired input

▪ Read first input value from user

▪ While input value is not the sentinel value

▪ Process the input value

▪ Read next input value from user

(c) Prof. John Gauch, Univ. of Arkansas, 2020 27

CONDITIONAL LOOPS

// Input varying loop

int Num = scanner.nextInt();

while (Num >= 0)

{

 float Val = sqrt(Num);

 System.out.println(Num + " square root = " + Val);

 Num = scanner.nextInt();

}

▪ This loop will process a sequence of input values until the

user enters the sentinel value (-1) to stop the loop

(c) Prof. John Gauch, Univ. of Arkansas, 2020 28

We read input just before while

loop and also in last line of loop

CONDITIONAL LOOPS

Conditional loop input and output:

16

16 square root = 4

9

9 square root = 3

42

42 square root = 6.48074

-1

(c) Prof. John Gauch, Univ. of Arkansas, 2020 29

The conditional loop stops when

the user enters the sentinel value

The user input

The program output

ERROR CHECKING

LOOPS

▪ In many programs we ask the user to enter a data value

within some specified range

▪ We can use while loops to perform error checking on the

user input, and keep looping until correct data is entered

▪ The basic approach is to:

▪ Prompt user for desired input

▪ Read input value from user

▪ While value is NOT correct

▪ Print error message and ask for input again

▪ Read input value from user

(c) Prof. John Gauch, Univ. of Arkansas, 2020 30

ERROR CHECKING

LOOPS

// Error checking loop example

System.out.print("Enter value between 17 and 42: ");

Value = scanner.nextInt();

while ((Value < 17) || (Value > 42))

{

 // Print error message and read another input

 System.out.print("Error: Enter value between 17 and 42: ");

 Value = scanner.nextInt();

}

System.out.println("Value = " + Value);

▪ This error checking loop will execute zero or more times and
only stop when the user input is valid

(c) Prof. John Gauch, Univ. of Arkansas, 2020 31

ERROR CHECKING

LOOPS

Error checking loop output:

Enter value between 17 and 42

11

Error: Please enter value between 17 and 42

-22

Error: Please enter value between 17 and 42

21

Value = 21

(c) Prof. John Gauch, Univ. of Arkansas, 2020 32

In this case, the user entered

several invalid values before

entering a valid value to stop loop

INFINITE LOOPS

▪ It is possible to create while loops which execute forever

▪ These infinite loops are often unplanned and unwanted

▪ To get out of infinite loop you need to kill your program

▪ Hit control-C on linux system

▪ Occasionally infinite loops are used on purpose

▪ This is not recommended, but you may see it in other

programmer's code

(c) Prof. John Gauch, Univ. of Arkansas, 2020 33

INFINITE LOOPS

// Infinite loop example

while (true)

 System.out.println("Hello Mom");

▪ This while loop will print “Hello Mom” on the screen in an

infinite loop until you kill the program by hitting control-C

(c) Prof. John Gauch, Univ. of Arkansas, 2020 34

INFINITE LOOPS

// Accidental infinite loop

int Total = 0;

int Count = 0;

while (Count < 10)

{

 Total = Total + Count;

 // should have count=count+1;

 System.out.println("Total =" + Total);

}

▪ We forgot to increment the variable Count inside the loop
so it will always be equal to 0, giving us an infinite loop

(c) Prof. John Gauch, Univ. of Arkansas, 2020 35

INFINITE LOOPS

// Potential infinite loop

int Height = 0;

while (Height < 42)

{

 System.out.print("Enter height: ");

 Height = scanner.nextInt();

}

▪ This loop will execute over and over until the user enters a
Height value >= 42

▪ This code could go in an infinite loop if the user types a
string like “height” instead an integer value

(c) Prof. John Gauch, Univ. of Arkansas, 2020 36

SUMMARY

▪ In this section we have introduced the syntax and use of

the Java while loop

▪ We also demonstrated several counting while loops and

conditional while loops

▪ Finally, we discussed the problem of infinite loops, how to

detect them, and how to avoid them

(c) Prof. John Gauch, Univ. of Arkansas, 2020 37

ITERATIVE

STATEMENTS

PART 2

FOR LOOPS

FOR LOOPS

▪ The Java for loop provides a compact syntax for iteration

▪ For loops are typically used for counting loops, but they

can be used for any looping task

▪ Allows you to specify the following all on one line

▪ Initialization statement

▪ Logical expression for continuing loop

▪ Statement to be executed after loop

(c) Prof. John Gauch, Univ. of Arkansas, 2020 39

FOR LOOPS

▪ The Java syntax of the for loop is:

for (initialization; logical expression; increment)

{

 // block of statements to be repeated

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 40

FOR LOOPS

// For loop example

for (int Num = 0; Num < 10; Num = Num+1)

{

 System.out.println(Num + "cubed=" + Num*Num*Num);

}

▪ The initialization statement is executed first

(c) Prof. John Gauch, Univ. of Arkansas, 2020 41

FOR LOOPS

// For loop example

for (int Num = 0; Num < 10; Num = Num+1)

{

 System.out.println(Num + "cubed=" + Num*Num*Num);

}

▪ Then the logical expression is evaluated

(c) Prof. John Gauch, Univ. of Arkansas, 2020 42

FOR LOOPS

// For loop example

for (int Num = 0; Num < 10; Num = Num+1)

{

 System.out.println(Num + "cubed=" + Num*Num*Num);

}

▪ If logical expression is true the block of code is executed

▪ If it is false, the program skips over the block of code

(c) Prof. John Gauch, Univ. of Arkansas, 2020 43

FOR LOOPS

// For loop example

for (int Num = 0; Num < 10; Num = Num+1)

{

 System.out.println(Num + "cubed=" + Num*Num*Num);

}

▪ Next the increment statement is executed

(c) Prof. John Gauch, Univ. of Arkansas, 2020 44

FOR LOOPS

// For loop example

for (int Num = 0; Num < 10; Num = Num+1)

{

 System.out.println(Num + "cubed=" + Num*Num*Num);

}

▪ Then the logical expression is evaluated again

▪ If it is true, we execute the block of code, the increment

statement and the logical expression again

▪ If it is false, the for loop ends

(c) Prof. John Gauch, Univ. of Arkansas, 2020 45

FOR LOOPS

// For loop example

for (int Num = 0; Num < 10; Num = Num+1)

{

 System.out.println(Num + "cubed=" + Num*Num*Num);

}

▪ If logical expression is true the block of code is executed

▪ If it is false, the program skips over the block of code

(c) Prof. John Gauch, Univ. of Arkansas, 2020 46

FOR LOOPS

// For loop example

for (int Num = 0; Num < 10; Num = Num+1)

{

 System.out.println(Num + "cubed=" + Num*Num*Num);

}

▪ Next the increment statement is executed

(c) Prof. John Gauch, Univ. of Arkansas, 2020 47

FOR LOOPS

// For loop example

for (int Num = 0; Num < 10; Num = Num+1)

{

 System.out.println(Num + "cubed=" + Num*Num*Num);

}

▪ Then the logical expression is evaluated again

▪ If it is true, we execute the block of code, the increment

statement and the logical expression again

▪ If it is false, the for loop ends

(c) Prof. John Gauch, Univ. of Arkansas, 2020 48

FOR LOOPS

// While loop example

int Num = 0;

while (Num < 10)

{

 System.out.println(Num + "cubed=" + Num*Num*Num);

 Num = Num+1;

}

▪ This while loop does the same thing as the for loop above

(c) Prof. John Gauch, Univ. of Arkansas, 2020 49

FOR LOOPS

// Another for loop example

for (int Amt = 42; Amt > 0; Amt = Amt/2)

{

 System.out.println(Amt + " halved=" + Amt/2);

}

▪ This for loop does the same work as one of our while loop

examples from the previous lesson

▪ This code is several lines shorter but it is also harder to

understand than a while loop implementation

(c) Prof. John Gauch, Univ. of Arkansas, 2020 50

FOR LOOPS

// Input varying loop

for (int Num=scanner.nextInt(); Num>=0; Num=scanner.nextInt())

 System.out.println(Num + " square root = " + sqrt(Num));

▪ This for loop does the same work as one of our while loop

examples from the previous lesson

▪ This code is several lines shorter because the initialization,

logical expression, and increment are all on one line

▪ Since the for loop body is only one line long, we can omit the

curly brackets { } to save two lines of code

(c) Prof. John Gauch, Univ. of Arkansas, 2020 51

FOR LOOPS

// Infinite loop example

for (int Val = 1; Val > 0; Val = Val*Val)

{

 System.out.println(Val + " squared " + Val*Val);

}

▪ This is an example of an accidental infinite loop

▪ The value of the Val variable will always equal 1 so the

logical expression will always be true

▪ The program will print values to the screen until the user

kills the program by typing control-C

(c) Prof. John Gauch, Univ. of Arkansas, 2020 52

FOR LOOPS

// Infinite loop example

for (int Val = 3; Val > 0; Val = Val*Val)

{

 System.out.println(Val + " squared " + Val*Val);

}

▪ This infinite loop ends when an error occurs

▪ Since Val will always be greater than zero so the logical

expression should always be true

▪ The program will print values to the screen until the value

overflows the integer and becomes negative

(c) Prof. John Gauch, Univ. of Arkansas, 2020 53

FOR LOOPS

Sample Output:

3 squared 9

9 squared 81

81 squared 6561

6561 squared 43046721

43046721 squared -501334399

(c) Prof. John Gauch, Univ. of Arkansas, 2020 54

CONVERTING LOOPS

▪ Computationally, for loops and while loops are identical

▪ The only real difference is in the Java syntax

▪ Some programmers prefer compact syntax of for loops

▪ Other programmers prefer the simplicity of while loops

▪ It is easy to convert a while loop into a for loop

▪ Change “while” to “for”

▪ Move the initialization statement to start of for loop line

▪ Keep logical expression the same

▪ Move block of statements into for loop body

▪ Move increment statement to end of for loop line

(c) Prof. John Gauch, Univ. of Arkansas, 2020 55

CONVERTING LOOPS

// initialization

while (logical expression)

{

 // block of statements to be repeated

 // increment

}

for (initialization; logical expression; increment)

{

 // block of statements to be repeated

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 56

Copy each part of

the while loop into

the corresponding

part of the for loop

CONVERTING LOOPS

// initialization

while (logical expression)

{

 // block of statements to be repeated

 // increment

}

for (initialization; logical expression; increment)

{

 // block of statements to be repeated

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 57

Copy each part of

the while loop into

the corresponding

part of the for loop

CONVERTING LOOPS

// initialization

while (logical expression)

{

 // block of statements to be repeated

 // increment

}

for (initialization; logical expression; increment)

{

 // block of statements to be repeated

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 58

Copy each part of

the while loop into

the corresponding

part of the for loop

CONVERTING LOOPS

// initialization

while (logical expression)

{

 // block of statements to be repeated

 // increment

}

for (initialization; logical expression; increment)

{

 // block of statements to be repeated

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 59

Copy each part of

the while loop into

the corresponding

part of the for loop

CONVERTING LOOPS

▪ It is also easy to convert a for loop into a while loop

▪ Change “for” to “while”

▪ Move the initialization statement before while loop

▪ Keep logical expression the same

▪ Move block of statements into while loop body

▪ Move increment statement to bottom of while loop body

(c) Prof. John Gauch, Univ. of Arkansas, 2020 60

CONVERTING LOOPS

for (initialization; logical expression; increment)

{

 // block of statements to be repeated

}

// initialization

while (logical expression)

{

 // block of statements to be repeated

 // increment

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 61

Copy all four parts of

the for loop into the

four corresponding

parts of the while loop

AUTO INCREMENT

AND DECREMENT

▪ The auto increment operator “++” can be used to quickly

add one to an integer variable

▪ Instead of using i = i+1 we can use i++

▪ The auto decrement operator “--” can be used to quickly

subtract one from an integer variable

▪ Instead of using j = j-1 we can use j--

▪ These operators are used quite frequently in for loops,

especially counting loops to save typing

(c) Prof. John Gauch, Univ. of Arkansas, 2020 62

AUTO INCREMENT

AND DECREMENT

▪ The auto increment and decrement operations can also be

placed before the variable to add or subtract one before

the value of the expression is evaluated

▪ There is a very subtle difference between ++i and i++

▪ System.out.println(++i) will add one to i, and then print i

▪ System.out.println(i++) will print i, and then add one to i

(c) Prof. John Gauch, Univ. of Arkansas, 2020 63

AUTO INCREMENT

AND DECREMENT

▪ It is also possible to combine arithmetic operators with the

assignment operator to save typing (and improve speed)

▪ We can replace a = a + b with a += b

▪ Similarly c = c - d can be written as c -= d

▪ The operators *=, /=, %= are also supported

▪ This results in shorter and faster code

▪ This syntax is also a little hard to read

(c) Prof. John Gauch, Univ. of Arkansas, 2020 64

AUTO INCREMENT

AND DECREMENT

// Example using compact operators

int Sum = 0;

int Product = 1;

for (Count = 0; Count < 13; Count++)

{

 Sum += Count;

 Product *= Count;

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 65

This is the same as

Sum = Sum + Count;

Product = Product * Count;

This is the same as

Count = Count + 1;

CODE DEMO

Compile and run Cannon.java

Compile and run Prime2.java

(c) Prof. John Gauch, Univ. of Arkansas, 2020 66

SUMMARY

▪ In this section we have introduced the syntax and use of

the Java for loop

▪ We also described how you can convert a for loop into a

while loop and vice versa

▪ Finally, we described the Java auto increment and auto

decrement operators and related operations that combine

an arithmetic operation with assignment

(c) Prof. John Gauch, Univ. of Arkansas, 2020 67

ITERATIVE

STATEMENTS

PART 3

MORE LOOPS

DO WHILE LOOPS

▪ In addition to while loops and for loops, Java has another

iterative statement called the do while loop

▪ Unlike other loops, the do while loop puts the logical

expression after the body of loop

▪ The body of loop will be always executed at least once

▪ If logical expression is true, the loop will execute again

▪ The do while loop ends when the expression is false

▪ Do while loops are useful for limited number of applications

(c) Prof. John Gauch, Univ. of Arkansas, 2020 69

DO WHILE LOOPS

▪ The Java syntax of the do while loop is:

do

{

 // block of statements to be repeated

}

while (logical expression);

(c) Prof. John Gauch, Univ. of Arkansas, 2020 70

Notice that

there IS a

semicolon at

the end of the

while() line

DO WHILE LOOPS

▪ We can visualize the program’s do while loop decision

process using a “flow chart” diagram (notice that the

block of code is executed before the logical expression)

(c) Prof. John Gauch, Univ. of Arkansas, 2020 71

Logical

expression

Logical

expression
Block of codeBlock of code

true

false

DO WHILE LOOPS

// Do while example

int Value = 0;

do

{

 System.out.println("Enter number between [0..9] ");

 Value = scanner.nextInt();

}

while ((Value < 0) || (Value > 9));

(c) Prof. John Gauch, Univ. of Arkansas, 2020 72

This do while loop

will prompt the

user for data one

or more times

until the correct

value is entered

DO WHILE LOOPS

// Equivalent while loop

int Value = 0;

System.out.println("Enter number between [0..9] ");

Value = scanner.nextInt();

while ((Value < 0) || (Value > 9))

{

 System.out.println("Error: Enter number between [0..9] ");

 Value = scanner.nextInt();

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 73

NESTED LOOPS

▪ It is often necessary for one loop to include another loop

to solve a problem

▪ This is called a nested loop

▪ Both loops need separate initializations, logical

expressions, and increments

▪ How many times will nested loops execute?

▪ If the outer loop executes N times

▪ And the inner loop executes M times each time it is reached

▪ Then inner block of code will be executed N x M times

▪ This analysis extends to three or more nested loops

(c) Prof. John Gauch, Univ. of Arkansas, 2020 74

NESTED LOOPS

// Outer loop

for (int Height=0; Height < 14; Height++)

{

 // Inner loop

 for (int Width=0; Width < 17; Width++)

 {

 // Operation

 System.out.print("*");

 }

 System.out.println();

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 75

The outer loop

executes 14 times

The inner loop

executes 14*17 times

NESTED LOOPS

(c) Prof. John Gauch, Univ. of Arkansas, 2020 76

Sample output from

the nested loop

example above has

14 rows and 17

columns of *’s

NESTED LOOPS

// Outer loop

for (int Number = 1; Number <= 15; Number++)

{

 // Inner loop

 int Factorial = 1;

 for (int Count = 1; Count <= Number; Count++)

 {

 // Operation

 Factorial = Factorial * Count;

 }

 System.out.print("Number = " + Number);

 System.out.println(" Factorial = " + Factorial);

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 77

The outer loop

executes 15

times

The inner loop

executes

Number times

NESTED LOOPS

Number = 1 Factorial = 1

 Number = 2 Factorial = 2

 Number = 3 Factorial = 6

 Number = 4 Factorial = 24

 Number = 5 Factorial = 120

 Number = 6 Factorial = 720

 Number = 7 Factorial = 5040

 Number = 8 Factorial = 40320

 Number = 9 Factorial = 362880

 Number = 10 Factorial = 3628800

 Number = 11 Factorial = 39916800

 Number = 12 Factorial = 479001600

 Number = 13 Factorial = 1932053504

 Number = 14 Factorial = 1278945280

 Number = 15 Factorial = 2004310016

(c) Prof. John Gauch, Univ. of Arkansas, 2020 78

These errors are

caused by integer

overflow

NESTED LOOPS

// Outer loop

for (int Number = 1; Number < 15; Number++)

{

 // Inner loop

 long Factorial = 1;

 for (int Count = 1; Count <= Number; Count++)

 {

 // Operation

 Factorial = Factorial * Count;

 }

 System.out.print("Number = " + Number);

 System.out.println(" Factorial = " + Factorial);

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 79

We can fix the

problem by using a

long variable to store

the Factorial value

NESTED LOOPS

Number = 1 Factorial = 1

 Number = 2 Factorial = 2

 Number = 3 Factorial = 6

 Number = 4 Factorial = 24

 Number = 5 Factorial = 120

 Number = 6 Factorial = 720

 Number = 7 Factorial = 5040

 Number = 8 Factorial = 40320

 Number = 9 Factorial = 362880

 Number = 10 Factorial = 3628800

 Number = 11 Factorial = 39916800

 Number = 12 Factorial = 479001600

 Number = 13 Factorial = 6227020800

 Number = 14 Factorial = 87178291200

 Number = 15 Factorial = 1307674368000

(c) Prof. John Gauch, Univ. of Arkansas, 2020 80

By using a long

variable the values of

13! 14! and 15! are

now correct

PRIME NUMBER

EXAMPLE

▪ Consider the problem of checking if a number is prime

▪ We need to see if it has any factors besides 1 and itself

▪ Loop over all possible factors for number

▪ The number is prime if no factor is found

▪ How can we find all prime numbers less than 1000?

▪ Loop over all numbers from 1..1000

▪ Loop over all possible factors for number

▪ The number is prime if no factors is found

▪ Nested loops will be needed to solve this problem

(c) Prof. John Gauch, Univ. of Arkansas, 2020 81

PRIME NUMBER

EXAMPLE

▪ Top down approach

▪ Start by writing outer loop that goes from 1..1000

▪ Debug program

▪ Then fill in the inner loop to check for prime numbers

▪ Debug program

▪ Bottom up approach

▪ Start with inner loop to check for prime numbers

▪ Debug program

▪ Write the outer loop that goes from 1..1000

▪ Debug program

(c) Prof. John Gauch, Univ. of Arkansas, 2020 82

PRIME NUMBER

EXAMPLE

public static void main(String[] args)

{

 // Loop over range of values

 for (int Number = 2; Number < 1000; Number++)

 {

 bool Prime = true;

 // Add prime checking code here later

 if (Prime) System.out.print(Number + “ “);

 }

}

(c) Prof. John Gauch, Univ. of Arkansas, 2020 83

First, we write the outer

loop that goes over a

range of values we want

to check for primes

PRIME NUMBER

EXAMPLE

Initial program output:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

197 198 199 200 … 990 991 992 993 994 995 996 997 998 999

(c) Prof. John Gauch, Univ. of Arkansas, 2020 84

PRIME NUMBER

EXAMPLE

public static void main(String[] args)

{

 // Loop over range of values

 for (int Number = 2; Number < 1000; Number++)

 {

 bool Prime = true;

 for (int Factor = 2; Factor <= sqrt(Number); Factor++)

 if ((Number > Factor) && (Number % Factor == 0))

 Prime = false;

 if (Prime) System.out.print(Number + “ “);

 }

}
(c) Prof. John Gauch, Univ. of Arkansas, 2020 85

Then we add the

inner loop to check

all possible factors

up to square root of

number and set

Prime to false if a

factor is found

PRIME NUMBER

EXAMPLE

Final program output:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79

83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163

167 173 179 181 191 193 197 199 211 223 227 229 233 239 241

251 257 263 269 271 277 281 283 293 307 311 313 317 331 337

347 349 353 359 367 373 379 383 389 397 401 409 419 421 431

433 439 443 449 457 461 463 467 479 487 491 499 503 509 521

523 541 547 557 563 569 571 577 587 593 599 601 607 613 617

619 631 641 643 647 653 659 661 673 677 683 691 701 709 719

727 733 739 743 751 757 761 769 773 787 797 809 811 821 823

827 829 839 853 857 859 863 877 881 883 887 907 911 919 929

937 941 947 953 967 971 977 983 991 997

(c) Prof. John Gauch, Univ. of Arkansas, 2020 86

SOFTWARE

ENGINEERING TIPS

▪ Print debugging messages inside each loop

▪ So you know how many iterations have been executed

▪ So you know what values your variables contain

▪ Make sure the loop executes correct number of times

▪ Off by one errors are the most common

▪ Anticipate loops that may execute zero times

▪ Make sure that subsequent code operates properly

▪ Anticipate and avoid infinite loops

▪ Make sure you get closer to the terminating condition of

the loop on each loop iteration

(c) Prof. John Gauch, Univ. of Arkansas, 2020 87

SOFTWARE

ENGINEERING TIPS

▪ Common programming mistakes

• Never update for loop counter variable inside for loop

• Never use the same counter variable for nested loops

▪ Missing or unmatched () brackets in logical expressions

▪ Missing or unmatched { } brackets in iterative statement

▪ Never use & instead of && in logical expressions

▪ Never use | instead of || in logical expressions

▪ Never use = instead of == in logical expressions

▪ Never use “;” directly after the for() or while() line

(c) Prof. John Gauch, Univ. of Arkansas, 2020 88

SUMMARY

▪ In this section we have studied the syntax and use of the

Java do while loop

▪ We also showed several example nested loops to create

more complex iterative programs

▪ Finally, have discussed several software engineering tips

for creating and debugging iterative programs

(c) Prof. John Gauch, Univ. of Arkansas, 2020 89

	Slide 1: Iterative Statements
	Slide 2: OVERVIEW
	Slide 3: OVERVIEW
	Slide 4: Iterative Statements
	Slide 5: While loops
	Slide 6: While loops
	Slide 7: While loops
	Slide 8: While loops
	Slide 9: While loops
	Slide 10: While loops
	Slide 11: Counting loops
	Slide 12: Counting loops
	Slide 13: Counting loops
	Slide 14: Counting loops
	Slide 15: Counting loops
	Slide 16: Counting loops
	Slide 17: Counting loops
	Slide 18: Counting loops
	Slide 19: Counting loops
	Slide 20: Counting loops
	Slide 21: Conditional loops
	Slide 22: Conditional loops
	Slide 23: Conditional loops
	Slide 24: Conditional loops
	Slide 25: Conditional loops
	Slide 26: CODE DEMO
	Slide 27: Conditional loops
	Slide 28: Conditional loops
	Slide 29: Conditional loops
	Slide 30: Error checking loops
	Slide 31: Error checking loops
	Slide 32: Error checking loops
	Slide 33: Infinite loops
	Slide 34: Infinite loops
	Slide 35: Infinite loops
	Slide 36: Infinite loops
	Slide 37: summary
	Slide 38: Iterative Statements
	Slide 39: For loops
	Slide 40: For loops
	Slide 41: For loops
	Slide 42: For loops
	Slide 43: For loops
	Slide 44: For loops
	Slide 45: For loops
	Slide 46: For loops
	Slide 47: For loops
	Slide 48: For loops
	Slide 49: For loops
	Slide 50: For loops
	Slide 51: For loops
	Slide 52: For loops
	Slide 53: For loops
	Slide 54: For loops
	Slide 55: Converting loops
	Slide 56: Converting loops
	Slide 57: Converting loops
	Slide 58: Converting loops
	Slide 59: Converting loops
	Slide 60: Converting loops
	Slide 61: Converting loops
	Slide 62: Auto increment and decrement
	Slide 63: Auto increment and decrement
	Slide 64: Auto increment and decrement
	Slide 65: Auto increment and decrement
	Slide 66: CODE DEMO
	Slide 67: summary
	Slide 68: Iterative Statements
	Slide 69: Do while loops
	Slide 70: Do while loops
	Slide 71: Do While loops
	Slide 72: Do while loops
	Slide 73: Do while loops
	Slide 74: Nested loops
	Slide 75: Nested loops
	Slide 76: Nested loops
	Slide 77: Nested loops
	Slide 78: Nested loops
	Slide 79: Nested loops
	Slide 80: Nested loops
	Slide 81: Prime number example
	Slide 82: Prime number example
	Slide 83: Prime number example
	Slide 84: Prime number example
	Slide 85: Prime number example
	Slide 86: Prime number example
	Slide 87: Software engineering tips
	Slide 88: Software engineering tips
	Slide 89: summary

