CLASSES AND OOP

OVERVIEW

OVERVIEW

* In this section, we will see how to design, implement and
use classes in object oriented programs

= Whatis a class?

= Aclass is a user defined abstract data type (ADT) that
contain variables (called attributes) and a collection of
operations on these variables (called methods)

= The primary advantage of classes is that they give us a
natural way to create robust and reliable code that can be
reused in a wide range of applications

(c) Prof. John Gauch, Univ of Arkansas, 2020

OVERVIEW

= Aclass is normally created by one programmer and used
by many other programmers
= Only the creator needs to know implementation details
= Users can ignore details and build code on top of the class

= This allows teams of programmers to work on separate
classes to build very large and complex applications

= Class libraries
= Java contains over 4000 general purpose class libraries
that can be used in any program

= We have already been using the String, Scanner, and
System.out, Math, Arrays classes in our programs

(c) Prof. John Gauch, Univ of Arkansas, 2020 3

OVERVIEW

» To design a class

= Select appropriate names and data types for the data fields
= Decide on names and parameters for the class methods
= This defines the user interface for the class

= To implement a class

= Implement constructor methods to initialize data fields
= Implement other methods to perform data operations

= To use a class

= Declare objects of the class
= Call methods on these objects

(c) Prof. John Gauch, Univ of Arkansas, 2020 4

OVERVIEW

= Lesson objectives:

= Learn how to create and use simple classes

= Learn how to create and use composite classes
= Study example programs with classes

= Complete online labs on classes

= Complete programming project using classes

(c) Prof. John Gauch, Univ of Arkansas, 2020 5

CLASSES

PART 1
DESIGNING CLASSES

DESIGNING CLASSES

* The main purpose of a class is to bundle together the data
and operations that make up an abstract data type (ADT)

= We must declare variables to store the data fields that
make up the abstract data type

= We must declare methods to implement all operations that
are possible on these data fields

= We must also specify how the class can be used
= \We must specify which of the variables and methods are
public and can be accessed directly by users of this class

= We must also specify which of the variables and methods
are private and hidden from users of this class

(c) Prof. John Gauch, Univ of Arkansas, 2020 7

DESIGNING CLASSES

= Overview of Java’s class syntax

public class class _name
{
// Private variables
private data_type variable name;
private data_type variable name;

\ We give the name of the class here

(c) Prof. John Gauch, Univ of Arkansas, 2020 8

DESIGNING CLASSES

= Overview of Java’s class syntax

public class class _name

{

// Private variables
private data_type variable name;
private data_type variable name;

\ These variable declarations define
the data fields inside the class that

make up the abstract data type

(c) Prof. John Gauch, Univ of Arkansas, 2020 9

DESIGNING CLASSES

= Overview of Java’s class syntax

public class class _name

{

// Private variables
private data_type variable name;
private data_type variable name;

\ The keyword private says that these
variables are hidden from users of the

class can can not be accessed directly

(c) Prof. John Gauch, Univ of Arkansas, 2020

10

DESIGNING CLASSES

First we declare constructor

methods that initialize the
/| Constructors / private data fields

public class_name() { }
public class_name(parameter_list) { }

// Methods

public return_type method _name(parameter list){ }
public return_type method_name(parameter list){ }
public return_type method _name(parameter list){ }

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 1

DESIGNING CLASSES

Next we declare the public
methods that implement
I/ Constructors operations on the data fields
public class_name() { }

public class_name(parameter_list) }

// Methods

public return_type method _name(parameter list){ }
public return_type method_name(parameter list){ }
public return_type method _name(parameter list){ }

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 2

DESIGNING CLASSES

For now the implementation of
these methods are empty. We
/] Constructors / can fill in the code later.
public class_name() { }
public class_name(parameter _list) { }

// Methods

public return_type method _name(parameter list){ }
public return_type method_name(parameter list){ }
public return_type method _name(parameter list){ }

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 3

TIME CLASS EXAMPLE

= Consider the problem of keeping track of the time of day
in a program
= We need an integer hour value [0..23]
= We need an integer minute value [0..59]
= We need an integer second value [0..59]

= We need to operations that safely manipulate the hour,
minute, second values
= Provide methods to access/modify time values
= Provide methods to input/output time values
= Make sure the user can not create invalid times

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 4

TIME CLASS EXAMPLE

= First we declare private variables to store the data fields
inside the Time class

= Use integers for hour, minute, second values

= Then we declare the constructor methods and all public
methods of the Time class
= Use “get” methods to access each of the Time data fields
= Use “set” methods to modify each of the Time data fields
= Use “read” method to input all Time data fields
= Use “print” method to output all Time data fields

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 5

TIME CLASS EXAMPLE

= Where do we put the Time class?
= By convention, the declaration of a class is placed in a java
file with the same name as the class
= For example, the Time class would be stored in Time.java

= How can we use the Time class in our program?
= We simply put the Time.java file in the same folder as our
program and compile both using “javac” or similar tool

= The Java run time system will automatically combine the
Java class files when you run the program

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 6

TIME CLASS EXAMPLE

public class Time

{

// Private variables
private int hour;

private int minute; < These va.riable.de_claration.s define
the data fields inside the Time class

private int second;

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 7

TIME CLASS EXAMPLE

/I Constructors
public Time() { } E The constructor methods will

public Time(int h, int m, ints) { } initialize the data fields

/I Setter methods

public void setHour(int h) { }
public void setMinute(int m) { }
public void setSecond(int s) { }

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 8

TIME CLASS EXAMPLE

/[Constructors
public Time() { }
public Time(int h, intm, ints){ }

/[Setter methods

, _ _ The setter methods will let users
public void setHour(int h) { } change the data fields. The
public void setMinute(int m) { } name of the data field is normally

rt of th thod
public void setSecond(int s) { } part of the method name

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 9

TIME CLASS EXAMPLE

/| Getter methods

public int getHour() { } The getter methods will let users

access the values of data fields.
public int getMinute() { } * The name of the data field is
public int getMinute() { } normally part of the method name
/l Other methods

public void read() { }
public void print() { }

(c) Prof. John Gauch, Univ of Arkansas, 2020 20

TIME CLASS EXAMPLE

/I Getter methods

public int getHour() { }
public int getMinute() { }
public int getMinute() { }

/| Other methods
public void read() { }
public void print() { }

We define other methods that use
or manipulate data fields here

<€

(c) Prof. John Gauch, Univ of Arkansas, 2020 2 1

TIME CLASS EXAMPLE

= |tis possible to extend the Time class in many ways

Add more data fields (eg. days, microseconds)

Add more methods to manipulate Time values

A method to print time in military time

A method to compare two time values

A method to add H hours, M minutes, S seconds

A method to subtract H hours, M minutes, S seconds

(c) Prof. John Gauch, Univ of Arkansas, 2020

22

SUMMARY

= A Java class is used to bundle together data and
operations that make up an abstract data type (ADT)
= Data fields are stored in class variables
= Qperations on this data are defined by methods

= The class definition also tells us how to use a class

= public methods (and variables) can be accessed
= private variables (and methods) are hidden from users

= The Java compiler will give us error messages if we
attempt to break these rules

(c) Prof. John Gauch, Univ of Arkansas, 2020 2 3

CLASSES

PART 2
IMPLEMENTING CLASSES

IMPLEMENTING
CLASSES

= To complete the implementation of a Java class we must
fill in the body of the methods we declared above

= We are allowed to access the method parameters and
define local variables to perform calculations

= We are also allowed to access and modify all of the private
variables in this class

* [nformation hiding

= We are not allowed to directly access or modify private
variables from another class

= QOther classes are not allowed to directly access or modify
the private variables in this class

(c) Prof. John Gauch, Univ of Arkansas, 2020

25

IMPLEMENTING
CLASSES

= The first methods we implement are the constructors

= The default constructor has no parameters, so we have to
choose a sensible default value for each private variable

public Time()
{
hour = 0;
minute = 0;
second = 0;

(c) Prof. John Gauch, Univ of Arkansas, 2020 26

IMPLEMENTING
CLASSES

= The first methods we implement are the constructors

= The second constructor typically has parameters to
initialize each of the private variables

public Time(int h, int m, int s)

{
hour = h;
minute = m;
second = s;

(c) Prof. John Gauch, Univ of Arkansas, 2020 27

IMPLEMENTING
CLASSES

* Next we implement are the setters to store the parameter
values in the private variables

= We can add error checking later to ensure that the values
being stored are valid (e.g. minutes between 0..59)

public void setHour(int h)

{

hour = h;

}

public void setMinute(int m)

{

minute = m;

}

(c) Prof. John Gauch, Univ of Arkansas, 2020 2 8

IMPLEMENTING
CLASSES

= Next we implement are the getters to return the current value
of private variables

= The return type of each getter should match the data type of
the corresponding private variable

public int getHour()
{

return hour;

}

public int getMinute()
{

return minute;

}

(c) Prof. John Gauch, Univ of Arkansas, 2020 29

IMPLEMENTING
CLASSES

= Finally we implement the remaining methods in the class

public void read()

{
Scanner scnr = new Scanner(System.in);
System.out.print("Enter hour: ");
hour = scnr.nextint();
System.out.print("Enter minute: ");
minute = scnr.nextInt();
System.out.print("Enter second: ");
second = scnr.nextInt();

(c) Prof. John Gauch, Univ of Arkansas, 2020 30

IMPLEMENTING
CLASSES

= Finally we implement the remaining methods in the class

public void print()

{
// Basic output of time variables
System.out.printin("Hour: " + hour);
System.out.printin("Minute: " + minute);
System.out.printin("Second: " + second);

}

(c) Prof. John Gauch, Univ of Arkansas, 2020 3 1

IMPLEMENTING
CLASSES

= Finally we implement the remaining methods in the class

public void print()
{

// Formatted output of Time variables
System.out.printf("%02d:%02d:%02d",
hour, minute, second);

Each time variable is printed as
an integer in a field 2 characters
wide and with leading zeros

Example: 12:04:07

(c) Prof. John Gauch, Univ of Arkansas, 2020 3 2

CODE DEMO

Time1.java

(c) Prof. John Gauch, Univ of Arkansas, 2020 3 3

ERROR CHECKING

= How should we test that a Time value is valid?

= We need to check that the hour, minute, second values are
always within their expected 0..23, 0..59, 0..59 ranges

= How should we correct invalid Time values?
= Simple solution uses modulo arithmetic to “wrap around”
any overflow that occurs (10:66:90 becomes 10:06:30)

= Fancy solution “wraps around and carries” the hour,
minute, second values (10:66:90 becomes 11:07:30)

= Change the hour/min/sec values to min/max value
(10:66:90 becomes 10:59:59)

(c) Prof. John Gauch, Univ of Arkansas, 2020 3 4

ERROR CHECKING

/[Simple time validation
hour = hour % 24;
minute = minute % 60;

second = second % 60;

This method will “wrap
around” any value overflows

It will not change valid hour,
minute, second values

(c) Prof. John Gauch, Univ of Arkansas, 2020

35

ERROR CHECKING

// Fancy time validation

minute = minute + second / 60;
second = second % 60;

hour = hour + minute / 60;

minute = minute % 60; This method will “wrap

hour = hour % 24: around and carries” any
value overflows

It will not change valid hour,
minute, second values

(c) Prof. John Gauch, Univ of Arkansas, 2020 36

ERROR CHECKING

= Private variables can be updated in several places in the
Time class (the constructor method and setter methods)

= We can put error checking code in a helper method

= This helper method is not intended for users of this class,
SO we can make it a private method

= We can call helper method in any method in the class

private void correctTime()

{

// Put error checking code here

(c) Prof. John Gauch, Univ of Arkansas, 2020 37

ERROR CHECKING

= We call the helper function when Time value is set

public Time(int h, int m, int s)

{

hour = h This will fix any errors in
minute = m; hour, minute, second when

the Time object is created
second = s;

correctTime();

(c) Prof. John Gauch, Univ of Arkansas, 2020 3 8

ERROR CHECKING

= We also call helper function when Time value is changed

public void setSecond(int s)

{

second = s, This will fix any errors in

correctTime(); < hour, minute, second when
the second value is changed

(c) Prof. John Gauch, Univ of Arkansas, 2020 39

SUMMARY

= To complete the implementation of Java class we fill in the
bodies of all of the methods in the class
= Start with constructors and getters and setters
= Then complete the read and print methods
= Make sure these compile before working on other methods

= Finally add error checking/correction after all of the basic
operations are completed

= |ncremental development

= |t is almost always faster and easier to edit, compile,
debug methods one at a time than all at once

(c) Prof. John Gauch, Univ of Arkansas, 2020

40

CLASSES

PART 3
USING CLASSES

CREATING OBJECTS

= Java objects are essentially variables of the abstract data
type we defined in our Java class

= In Java parlance, an object is an “instance of the class”

= We create objects in Java as follows:

= class_name object_ name = new class_name(params);

>

We use the class
name in two places

(c) Prof. John Gauch, Univ of Arkansas, 2020 42

CREATING OBJECTS

= Java objects are essentially variables of the abstract data
type we defined in our Java class

= In Java parlance, an object is an “instance of the class”

= We create objects in Java as follows:

= class_name object_ name = new class_name(params);

AN /

This object is initialized
using these parameters

(c) Prof. John Gauch, Univ of Arkansas, 2020 4 3

CREATING OBJECTS

» Time class example

// Creating time1 = 00:00:00
Time time1 = new Time();

// Creating time2 = 01:02:03
Time time2 = new Time(1, 2, 3);

(c) Prof. John Gauch, Univ of Arkansas, 2020 44

CALLING METHODS

= To call a public method on an object, we must tell the Java
compiler which object to send to the method

= This is done with the following “dot notation”
= object_name.method name(params);

= Java will send the specified object into the method as an
“implicit parameter”

= This allows the method to have access to the private data
fields in the object

(c) Prof. John Gauch, Univ of Arkansas, 2020 45

CALLING METHODS

= The Java compiler will only let us access public methods

= You will get errors if you attempt to access the private data
fields in the class using the dot notation

Time time3 = new Time(4,5,6);
time3.minute = 42;

\ This will cause a

compiler error

(c) Prof. John Gauch, Univ of Arkansas, 2020 46

CALLING METHODS

» Time class example

// Creating time1 = 00:00:00
Time time1 = new Time();

// Change time values
time1.setHour(11);
time1.setSecond(42);

/l Print time values
time1.print();
System.out.printin(*minute = ” + time1.getMinute());

(c) Prof. John Gauch, Univ of Arkansas, 2020 47

UNIT TESTING

* You should always test all of the methods in a class before
using it in another program

= One way to do this is to add a “unitTest” method in the
class when it is being implemented

= This method should be a static method (which does not
have direct access to private variables of an object)

= The “unitTest” method should call all methods with typical
parameters, and verify that they are working correctly

(c) Prof. John Gauch, Univ of Arkansas, 2020

48

UNIT TESTING

» Time class example

public static unitTest()

{ Testing the set methods
Time time1 = new Time();
time1.setHour(1);
time1.setMinute(2);

time1.setSecond(3);
time1.print(); < Should print 01:02:03

(c) Prof. John Gauch, Univ of Arkansas, 2020 49

UNIT TESTING

Testing the get methods

System.out.printin(*hour = ” + time1.getHour());
System.out.printin("minute =" + time1.getMinute());

System.out.printin(“second =" + time1.getSecond());

Testing error correction in
the constructor method
time2.print();

\ Should print 01:07:21

Time time2 = new Time(1, 2, 321); <——

(c) Prof. John Gauch, Univ of Arkansas, 2020 50

SUMMARY

* In this section, we saw how to create Java objects and call
methods using these objects
= Must use “dot notation” to call methods
= We can only access public methods in a class
= Java will stop us from using private variables directly

= Unit testing is strongly recommended

= Test all of the methods with normal parameter values

= Test error checking code by calling methods with abnormal
parameter values

(c) Prof. John Gauch, Univ of Arkansas, 2020 51

CLASSES

PART 3
SIMPLE CLASS EXAMPLES

SIMPLE CLASS
EXAMPLES

* The goal of object oriented programming is to create
applications that build upon a collection of a classes

= There are three steps to this design process:

= Decide what information is needed to describe object
= What private variables to declare

= Decide what operations on the object are necessary
= What public methods to create

= Decide how to build applications using class
= How to create and use objects in a program

(c) Prof. John Gauch, Univ of Arkansas, 2020

53

SIMPLE CLASS
EXAMPLES

* In this section, we will illustrate object oriented
programming by creating two simple classes:

= Student class
= Stores basic information about a student
= Very basic operations to access information
= Could be used as part of large university database

= Linear class
= Store information about linear equations
= Classic mathematical operations for linear equations
= Could be used in an engineering application

(c) Prof. John Gauch, Univ of Arkansas, 2020

94

STUDENT CLASS

* What student information might be of interest?

= Student ID number (int)

= First name, middle name, last name (string)
= Home address, campus address (string)

= ACT, SAT test scores (int)

= Undergraduate major (string)

= Current GPA (float)

= We store information in private variables in the class

(c) Prof. John Gauch, Univ of Arkansas, 2020 5 5

STUDENT CLASS

= What operations could we perform on a student?

= Change address

= Update test scores
= Change major

= Update GPA

= Print all information

= We use get and set methods and other methods to
implement operations

(c) Prof. John Gauch, Univ of Arkansas, 2020 56

STUDENT CLASS

pubic class Student
{
// Private variables
private int ID;

private String Name; _

private String Address;
private float GPA;

(c) Prof. John Gauch, Univ of Arkansas, 2020

These variable
declarations define the
data fields inside the
Student class

S7

STUDENT CLASS

/| Default constructor
public Student()

{
ID = 0;
Name = "name"; We choose
Address = "address"; < default values
GPA — OO, for all variables
}

(c) Prof. John Gauch, Univ of Arkansas, 2020 58

STUDENT CLASS

/Il Getters

public int getlD() { return ID; }

public String getName() { return Name; }

public String getAddress() { return Address; } One line getters and

public float getGPA() { return GPA;} < setters save space
in the program

/[Setters

public void setID(intid) { ID =id; }

public void setName(String name) { Name = name; }

public void setAddress(String address) { Address = address; }
public void setGPA(float gpa) { GPA = gpa; }

(c) Prof. John Gauch, Univ of Arkansas, 2020 59

STUDENT CLASS

I/ Print method

public void print()

{
System.out.printin("ID: " + ID);
System.out.printin("GPA: " + GPA);
System.out.printin("Name: " + Name);
System.out.printin("Address: " + Address);

The format of the output
may depend on the needs
of the application

(c) Prof. John Gauch, Univ of Arkansas, 2020

60

STUDENT CLASS

// Main program

public static void main(String[] args)

{
System.out.printin("Testing the Student class");
Student test = new Student();
test.setID(123456); We can test the Student
test.setName("John Gauch"); < class by calling each of
test.setAddress("518 JB Hunt"); the methods
test.setGPA(3.14);
test.print();

(c) Prof. John Gauch, Univ of Arkansas, 2020 61

STUDENT CLASS

Testing the Student class

ID: 123456

GPA: 3.14

Name: John Smith
Address: 518 JB Hunt

(c) Prof. John Gauch, Univ of Arkansas, 2020

62

CODE DEMO

Student.java

(c) Prof. John Gauch, Univ of Arkansas, 2020 63

LINEAR CLASS

= How can we represent a linear equation?

= Slope intercept formula: y=mx+Db
= Store m, b values
= Geometric formula: (n,,n,) - (x,y) =d
= Store normal (n,,n,) and distance from origin d
= Parametric formula: (X4,y;) + t (X,-X{,Y5-Y1)
= Store points on line (x4,y4) and (X,,Y,)
= Classic formula: ax + by +c =0
= Store a, b, ¢ values

= We can store the linear equation in one way, and convert
to any of the other representations as needed

(c) Prof. John Gauch, Univ of Arkansas, 2020 64

LINEAR CLASS

= What operations could we perform on a linear equation?

= (Get and set the line equation coefficients

= Print the line in y=mx+b or ax+by+c=0 format
= Check if line is vertical or horizontal

= Check if two lines are parallel or perpendicular
= Solve for x when given y

= Solve for y when given x

= Calculate the intersection point of two lines

= Calculate distance from a point to the line

» Users of this class do not need to know how these
operations are implemented — just how to call them

(c) Prof. John Gauch, Univ of Arkansas, 2020 65

LINEAR CLASS

pubic class Linear

{

// Private variables

private double A; We are using the

private double B; < Ax+By+C=0
line representation

private double C;

(c) Prof. John Gauch, Univ of Arkansas, 2020 66

LINEAR CLASS

public Linear() {

A=0; The default constructor

B=0: < sets line equation to
Ox+0y+0=0

C=0;

}

public Linear(double a, double b, double c) {
A=a;
_ The non-default constructor
B =b; <« sets line equation to
C=c: ax+by+c=0

(c) Prof. John Gauch, Univ of Arkansas, 2020

67

LINEAR CLASS

/I Setter methods

public void setA(double a) {A=a;}
public void setB(double b) { B = b; }
public void setC(double c) { C =c; }

Il Getter methods

public double getA() { return A; }
public double getB() { return B; }
public double getC() { return C; }

(c) Prof. John Gauch, Univ of Arkansas, 2020 6 8

LINEAR CLASS

// Check if line is vertical
public Boolean isVertical()

{

return (B == 0);

}

/| Check if line is horizontal
public Boolean isHorizontal()

{
return (A == 0);

(c) Prof. John Gauch, Univ of Arkansas, 2020

69

LINEAR CLASS

// Solve Ax + By + C =0 for x given y
public double solveForX(double y)

{
if (A==0) < We must check value of A
to avoid a divide by zero
return O;
else

return-B*y + C)/A;

(c) Prof. John Gauch, Univ of Arkansas, 2020 70

LINEAR CLASS

// Solve Ax + By + C = 0 for y given x

public double solveForY(double x)

{
if (B==0) <« We must check value of B
to avoid a divide by zero
return O;
else

return -(A*x + C) / B;

(c) Prof. John Gauch, Univ of Arkansas, 2020 71

LINEAR CLASS

/[Print methods
public String toString()

{
return String.format("%3.2fx + %3.2fy + %3.2f = 0", A, B, C);

public void print() Here we create formatted
{ string for the line equation

System.out.printin(toString()); «——— Here we print the formatted
} string out to the screen

(c) Prof. John Gauch, Univ of Arkansas, 2020

72

LINEAR CLASS

// Main program

public static void main(String[] args)

{
System.out.printin("Testing the Linear class");
Linear eq1 = new Linear(1,2,3);
System.out.printin("\nLine equation: " + eq1.toString());
System.out.printin("\nLine vertical =" + eq1.isVertical());

System.out.printin("\nLine horizontal =" + eq1.isHorizontal());

(c) Prof. John Gauch, Univ of Arkansas, 2020 73

LINEAR CLASS

Linear eg2 = new Linear(0,1,2);
System.out.printin("\nLine equation: " + eq2.toString());
System.out.printin("\nLine vertical =" + eqg2.isVertical());

System.out.printin("\nLine horizontal =" + eqg2.isHorizontal());

Linear eq3 = new Linear(3,0,1);
System.out.print("\nLine equation: "); eq3.printin();
System.out.printin("\nLine vertical =" + eq3.isVertical());

System.out.printin("\nLine horizontal =" + eq3.isHorizontal());

(c) Prof. John Gauch, Univ of Arkansas, 2020 74

LINEAR CLASS

Testing the Linear class

Line equation: 1.00x + 2.00y + 3.00=0
Line vertical = false

Line horizontal = false

(c) Prof. John Gauch, Univ of Arkansas, 2020 7 5

LINEAR CLASS

Line equation: 0.00x + 1.00y + 2.00=0
Line vertical = false

Line horizontal = true

Line equation: 3.00x + 0.00y + 1.00=10
Line vertical = true

Line horizontal = false

(c) Prof. John Gauch, Univ of Arkansas, 2020 76

CODE DEMO

Linear.java

(c) Prof. John Gauch, Univ of Arkansas, 2020 77

SUMMARY

= |n this section, we showed how two simple classes could
be defined, implemented, and used in a program

= The Student class illustrated how separate get/set
methods could be used for each private variable

= The Student class methods do not have any error
checking, but this could be added (eg. GPA < 4.0)

= The Linear class uses get/set methods with multiple
parameters to access/store private variables

= The Linear class illustrated how the toString method can
simplify print methods

(c) Prof. John Gauch, Univ of Arkansas, 2020 78

CLASSES

PART 4
ADVANCED CLASSES

ADVANCED CLASSES

= Now that we have created a class, we can use it as a
building block to create more complex classes
= \We can create arrays of objects
= We can nest objects within other objects
= We can pass objects as parameters into methods
= We can return objects from methods
= We can define private “helper” methods in a class
= We can define public constants or variables in a class
= We can copy objects with a “copy constructor method”
= We can compare objects with a “compare method”

(c) Prof. John Gauch, Univ of Arkansas, 2020 80

ARRAYS OF OBJECTS

= An array of objects can be used to store data

= "Student[] student = new Student[5]” creates an array of
five objects to store all student information

student student[2] student[2].setName(“John”);
array object To set private variable

(c) Prof. John Gauch, Univ of Arkansas, 2020

81

ARRAYS OF OBJECTS

// Main program
public static void main(String[] args)

{

System.out.printin("Testing the Student class");
Student student[] = new Student[5];

student

student]|
student]|
student]|

2]
student]|

.setlD(123456);

].setName("John");

2
2].setAddress("123 Main Street");
2].setGPA(3.45);

2].print();

(c) Prof. John Gauch, Univ of Arkansas, 2020

82

OBJECTS WITHIN OBJECTS

= A class can contain other objects as private variables

= By nesting classes we can build more complex ADTs

= For example, we can store track and field race results
using a class that contains two other classes

Person class keeps track of
(name, address, age, gender)

Time class keeps track of
(hour, minute seconds)

Result class keeps track of all
track and field race results
(c) Prof. John Gauch, Univ of Arkansas, 2020 83

OBJECTS WITHIN OBJECTS

pubic class Person

{
private String name;
private String address;
private int age;

private char gender;

(c) Prof. John Gauch, Univ of Arkansas, 2020 8 4

OBJECTS WITHIN OBJECTS

pubic class Time

{
private int hour;
private int minute;

private int second;

(c) Prof. John Gauch, Univ of Arkansas, 2020 85

OBJECTS WITHIN OBJECTS

pubic class Result

{
private Person person;
private String event_name;
private Time event_time;
private boolean disqualified;

private int event_position;

(c) Prof. John Gauch, Univ of Arkansas, 2020 86

OBJECTS AS PARAMETERS

= Objects can be passed as parameters into methods

= Areference to the object is sent to the method

= The method can access and change attributes of the
object by calling methods of the object’s class

= Example:
= The Event class described above has Person and Time
objects as private variables.

= To store or manipulate these objects in the Event class
they need to passed into methods as parameters

(c) Prof. John Gauch, Univ of Arkansas, 2020 87

OBJECTS AS PARAMETERS

pubic class Result

{

public void setPerson(Person p)

{

person = new Person(p); <

}

public void setEventTime(Time t)

{

We should not use “person = p”
because that would not make a
copy of the Person object

Similarly, we should use the

event_time = new Time(t); <

(c) Prof. John Gauch, Univ of Arkansas, 2020

Time copy constructor to save
the time value

88

RETURNING OBJECTS

= An object can also be used as a return type for a method

= This lets us return more information from a method
= We need to create and initialize the return object
= We can use the returned object in our program

= Example:

= The Event class described above has Person and Time
objects as private variables.

= The getPerson and getEventTime methods in the Event
class need to return these objects

(c) Prof. John Gauch, Univ of Arkansas, 2020 89

RETURNING OBJECTS

pubic class Result

{

public Person getPerson()

{

return person,;

}

public Person getEventTime()

{

return event_time;

}

(c) Prof. John Gauch, Univ of Arkansas, 2020 90

PRIVATE METHODS

= We are allowed to make methods in a class private

= Use the keyword “private” when declaring the method

= Private methods can be called by other methods in the
class, but can not be called from outside the class

= This is useful for error checking operations we need to
implement the class, but the user does not need

= Example:

= The “private void correctTime()” method in the Time class
ensures that the hour, minute, second are valid

(c) Prof. John Gauch, Univ of Arkansas, 2020 9 1

PUBLIC VARIABLES

= We are allowed to make variables in a class public

= Use the keyword “public” when declaring the variable

= Public variables can be read and modified by users of the
class in the main program

= Some programmers will do this on purpose to avoid the
overhead/inconvenience of get/set methods

= Public variables will break the data hiding principal in
object oriented programming, so it is not recommended

(c) Prof. John Gauch, Univ of Arkansas, 2020 92

PUBLIC CONSTANTS

= We can declare public constants in a class

= We use “public static final” to declare a constant

= By convention, the name of the constant should be in be in
capital letters (e.g. public static final int MAGIC = 42;)

= Static constants can be used to:

= Specify the size of a private array

= Specify the min/max values on private variables
= Specify Boolean flags for debugging or printing
= Specify mathematical constants (e.g. PI)

(c) Prof. John Gauch, Univ of Arkansas, 2020 9 3

COPY CONSTRUCTOR

= Assignment of objects

Assume thing1 and thing2 are objects of the same class
We are allowed to type “thing2 = thing1;”

This does NOT do a field-by-field copy of thing1 to thing2
Instead, thing2 now refers to thing1

Any change we make to thing2 will really change thing1
Any change we make to thing1 will be visible to thing2

= We need to implement a copy constructor to make a field-
by-field copy of one object into another

Eg. thing2 = new Thing(thing1);

(c) Prof. John Gauch, Univ of Arkansas, 2020

94

COPY CONSTRUCTOR

* The copy constructor must copy all data fields from the
input object into the data fields of object being created

public Thing(Thing thing)
{
field1 = thing.field1;
field2 = thing.field2;

field3 = thing.field3;
We can access the data
fields of thing because we

} are inside the Thing class

(c) Prof. John Gauch, Univ of Arkansas, 2020

95

COMPARE METHOD

= Comparison of two objects

= Assume thing1 and thing2 are objects of the same class

= \We are allowed to type “if (thing2 == thing1)”

= Unfortunately this does NOT do a field-by-field comparison
= |t tests to see if thing1 and thing2 refer to the same object

= In order to compare two objects on a field-by-field basis
we need to implement a compare method

= Eg: if (thing1.compare(thing2) == 0) // returns 0 if equal

(c) Prof. John Gauch, Univ of Arkansas, 2020

96

COMPARE METHOD

= The implementation of a compare method should compare
all of the the fields of the input object and return 1, 0, -1

public int compare(Thing thing)

{ i
f (field1 - thing.field1 > 0) return 1; o orcor and 1 e
|f (f|e|d1 - th|ngf|e|d1 < O) return -1 , parameter S |arger

if (field2 - thing.field2 > 0) return 1;
if (field2 - thing.field2 < 0) return -1

return O;
) \ We return O if all object fields

are equal to each other

(c) Prof. John Gauch, Univ of Arkansas, 2020

97

COMPARE METHOD

= The implementation of a compare method should compare
all of the the fields of the input object and return 1, 0, -1

public int compare(Thing thing)

{ i
if (field1 > thing.field1) return 1; YSV?a;gLurrggdltf??ﬁ;
|f (f|e|d1 < th|ngf|e|d1) return '1, parameter S |arger

if (field2 > thing.field2) return 1;
if (field2 < thing.field2) return -1

return O;
) \ We return O if all object fields

are equal to each other

(c) Prof. John Gauch, Univ of Arkansas, 2020

98

SUMMARY

* In this section, we discussed the following:

Composite classes (arrays of objects, nested objects)
Assignment and comparison of objects

Using objects as parameters and return values
Private methods and public variables

Static constants

Copy constructors

Compare methods

(c) Prof. John Gauch, Univ of Arkansas, 2020

99

CLASSES

PART 5
ADVANCED CLASS EXAMPLES

ADVANCED CLASS
EXAMPLES

= Consider the problem of creating a 2D platform video
game like Super Mario Bros or Donkey Kong

Esgigﬁ - Ix22 "EEP TEE Iﬁﬁﬁﬂﬂﬂ# T[IP-l.'.'H.'.'II'?ll.'.'H.'.'I' T

IHI o (2IEYE3UT)

ut': S
. Im
-___'_J.I.IL _____ e

FOFCEEECEED ri} FEFLE LJTJ’JEF’LJ
el

(A e e e e e e e e
Sample game images from Wikipedia

(c) Prof. John Gauch, Univ of Arkansas, 2020

101

ADVANCED CLASS
EXAMPLES

= What do we need to know to implement this game?

= We need to know the location of players on the screen
= \We need geometric models for platforms and objects
= \We need images of players, clouds, trees, etc.

= We can use a collection of classes to store geometric
information and implement operations on this data
= We can build models using Points, Lines and Polygons

= These classes will demonstrate many of the advanced
Java features discussed in the previous section

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 O 2

POINT CLASS

= What data do we need to store?

= For a 2D point we need the (x,y) coordinates

= What operations do we need to implement?

= Basic get and set methods

= Some way to print or display points

= Distance between two points

= Geometric transformations (translate, rotate, scale)

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 0 3

POINT CLASS

public class Point

{

/[Private variables
private double X; <—— Private variables
private double Y;

/I Constructors
public Point()

X = 0: <——— Basic constructor

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 0 4

POINT CLASS

public Point(double x, double y)

X=x; <—— Constructor with parameters

public Point(Point p)
{

X =p.X;

Y =p.Y;

<—— Copy constructor

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 0 5

POINT CLASS

/I Setter methods
public void setX(double x) { X = x; }
public void setY(double y) {Y =vy; }

Setter, getter, toString

/I Getter methods and print methods
public double getX() { return X; }

public double getY() {return Y; }

// Print methods

public String toString() { return String.format("(%3.2f, %3.2f)", X, Y); }
public void print() { System.out.print(toString()); }

public void printin() { System.out.printin(toString()); }

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 06

POINT CLASS

public double distance(Point point)

{
double dx = X - po_'”t'x; Calculate distance
double dy =Y - point.Y; between two Points
return Math.sqrt(dx*dx + dy*dy);

}

public void translate(double dx, double dy)

{
X +=dx;

Translate the (x,
Y += dy. (X,y)

coordinates of Point

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 07

POINT CLASS

public void rotate(double angle)

{
double newX = X * Math.cos(angle) - Y * Math.sin(angle);
double newY = X * Math.sin(angle) + Y * Math.cos(angle);
X = newX;
Y = newY: \ Rotate the (x,y)
) coordinates of Point

public void scale(double sx, double sy)

{

"= sX Scale the (x,y)
* e . ’ .
= sy; coordinates of Point

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 0 8

POINT CLASS

public static void main(String[] args)

{

System.out.printin("\nTesting the Point class");

/] Test constructors and print methods
Point p1 = new Point();
System.out.printin("p1 =" + p1.toString());
Point p2 = new Point(3,7);
System.out.printin("p2 = " + p2.toString());
Point p3 = new Point(p2);
System.out.print("p3 ="); p3.printin();

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 09

POINT CLASS

Il Test distance calculations

double distance = p1.distance(p2);
System.out.printin("p1.distance(p2) =" + distance);
System.out.printin("p1.distance(p3) =" + p1.distance(p3));
System.out.printin("p2.distance(p3) =" + p2.distance(p3));

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 1 0

POINT CLASS

I/l Test geometric operations

p1.translate(1, -2);

System.out.printin("p1.translate(1, -2) =" + p1.toString());
p2.rotate(Math.PI/2);

System.out.printin("p2.rotate(P1/2) = " + p2.toString());
p3.scale(1.5, 0.5);

System.out.print("p3.scale(1.5, 0.5) ="); p3.printin();

}

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 1 1

POINT CLASS

Sample Program Output

Testing the Point class

p1=(0.00, 0.00)

p2 = (3.00, 7.00)

p3 = (3.00, 7.00)

p1.distance(p2) = 7.615773105863909
p1.distance(p3) = 7.615773105863909
p2.distance(p3) = 0.0

p1.translate(1, -2) = (1.00, -2.00)
p2.rotate(Pl1/2) = (-7.00, 3.00)
p3.scale(1.5, 0.5) = (4.50, 3.50)

(c) Prof. John Gauch, Univ of Arkansas, 2020

112

CODE DEMO

Point.java

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 1 3

LINE CLASS

= What data do we need to store?

Lines can be defined in terms of two Points on the line
From this, we can derive Ax+By+C=0 line equation

= What operations do we need to implement?

Basic get and set methods

Some way to print or display lines

Geometric transformations (translate, rotate, scale)
Distance between points and a line

Intersection of two lines

(c) Prof. John Gauch, Univ of Arkansas, 2020

114

LINE CLASS

public class Line

{
// Private variables
private Point point1; , Private var!ableg of Line
orivate Point point2: are two Point objects

/I Constructors

public Line()

{
point1 = new Point(0,0); < Constructor creates two
point2 = new Point(0,0); Points that define Line

}

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 1 5

LINE CLASS

public Line(Point p1, Point p2)

{
point1 = new Point(p1);

point2 = new Point(p2);

public Line(Line line)

{
point1 = new Point(line.point1);
point2 = new Point(line.point2);

(c) Prof. John Gauch, Univ of Arkansas, 2020

Constructor with two
Points that define Line

Copy constructor with

Line parameter

116

LINE CLASS

public Line(double x1, double y1, double x2, double y2)

{
point1 = new Point(x1, y1); Constructor with four
point2 = new Point(x2, y2); — Point coordinates that
) define Line

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 1 7

LINE CLASS

/| Setter methods

public void setP1(Point p) { point1 = new Point(p); } We must make copies of
public void setP2(Point p) { point2 = new Point(p); } the Point parameters

/I Getter methods
public Point getP1() { return new Point(point1); }
public Point getP2() { return new Point(point2); }

N

We must return new Points
instead of returning references
to private variables

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 1 8

LINE CLASS

/[Print methods
public String toString()

{

return String.format("%s -> %s",
point1.toString(), point2.toString());

Defining toString and
print methods

public void print() { System.out.print(toString()); }
public void printin() { System.out.printin(toString()); }

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 1 9

LINE CLASS

/l Geometric methods

public void rotate(double angle)
Here we call Point

<€ methods to implement
geometric operations

{ point1.rotate(angle);

point2.rotate(angle); }

public void translate(double dx, double dy)
{ point1.translate(dx,dy);
point2.translate(dx,dy); }

public void scale(double sx, double sy)
{ point1.scale(sx,sy);
point2.scale(sx,sy); }

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 20

LINE CLASS

// Distance method
public double distance(Point point)
{
double x = point.getX();
double y = point.getY();
double A = point2.getY() - point1.getY();
double B = point1.getX() - point2.getX();
double C = - A * point2.getX() - B * point2.getY();
return (A*x + B*y + C) / Math.sqrt(A*A + B*B);

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 2 1

LINE CLASS

/I Intersection method

public Point intersect(Line line)

{
double A1 = point2.getY() - point1.getY();
double B1 = point1.getX() - point2.getX();
double C1 = - A1 * point2.getX() - B1 * point2.getY();
double A2 = line.point2.getY() - line.point1.getY();

First we calculate two
line equations based on
Point coordinates

double B2 = line.point1.getX() - line.point2.getX();
double C2 = - A2 * line.point2.getX() - B2 * line.point2.getY();
double x = (B1*C2-C1*B2)/ (A1 *B2-B1*A2);
doubley = (A1*C2-C1*A2)/(B1*A2-A1~*B2);

return new Point(x, y);

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 2 2

LINE CLASS

/I Intersection method
public Point intersect(Line line)
{
double A1 = point2.getY() - point1.getY();
double B1 = point1.getX() - point2.getX();
double C1 = - A1 * point2.getX() - B1 * point2.getY();
double A2 = line.point2.getY() - line.point1.getY();
double B2 = line.point1.getX() - line.point2.getX();
double C2 = - A2 * line.point2.getX() - B2 * line.point2.getY();
double x = (B1*C2-C1*B2)/ (A1 *B2-B1*A2);

doubley = (A1*C2-C17*A2)/(B1"A2-A1" B2); Next we calculate the
return new Point(x, y); € line intersection Point
) (without error checking)

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 2 3

LINE CLASS

public static void main(String[] args)

{

System.out.printin("\nTesting the Line class");

/| Test constructors
Finally we perform unit

testing on Line class by
calling all of the methods

/] Test getters and setters

/] Test geometric methods
/] Test intersection method

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 2 4

CODE DEMO

Line.java

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 2 5

POLYGON CLASS

= What data do we need to store?

= A polygon object is a closed sequence of line segments
= We can define a polygon using an array of Points

= What operations do we need to implement?

= Basic get and set methods

= Some way to print or display points

= Geometric transformations (translate, rotate, scale)

= Eventually want methods to draw polygons in a game

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 2 6

POLYGON CLASS

public class Polygon

{
/[Private variables Constant defines
private static int MAX_POINTS = 10; <——— maximum number of
private int point_count; Points in a Polygon

private Point [] point_array;

/I Constructors
_ We allocate empty
public Polygon()

array of Points and set
{ / point count to zero
point_count = 0;

point_array = new Point{MAX_POINTS];

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 2 7

POLYGON CLASS

public Polygon(Polygon poly)
{
point_count = poly.point_count;
point_array = new PointfMAX_POINTS];
for (int index = 0; index < point_count; index++)
point_array[index] = new Point(poly.point_array[index]);

The copy constructor
creates a copy of the
array of Points from
the Polygon parameter

(c) Prof. John Gauch, Univ of Arkansas, 2020

128

POLYGON CLASS

/I Setter method
public void addPoint(Point point)

We should not save the Point
this way because changes to

{ the Polygon would also
if (point_count < MAX_POINTS) change the Point object in the
{ main program

/[point_array[point_count] = point;
point_array[point_count] = new Point(point);
point_count++;

Here we save a copy of the
Point in the next available
array location and increment
the counter

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 29

POLYGON CLASS

/I Getter method
public Point getPoint(int index)
{
if ((index > 0) && (index < point_count))
return new Point(point_array[index]);
else

return null; \ This method returns one

} Point from the Polygon
array or the value null if

index is out of bounds

(c) Prof. John Gauch, Univ of Arkansas, 2020

130

POLYGON CLASS

// Print methods
public String toString()
{
String result = "";
for (int index = 0; index < point_count; index++)
result = result + point_array[index].toString() + " ";

H

return result; Defining toString and

} print methods

public void print() { System.out.print(toString()); }
public void printin() { System.out.printin(toString()); }

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 3 1

POLYGON CLASS

Il Geometric methods
public void translate(double dx, double dy)
{ for (intindex = 0; index < point_count; index++)

point_array[index].translate(dx,dy); }
\ Here we call Point
methods to implement

public void rotate(double angle) : :
geometric operations
{ for (int index = 0; index < point_count; index++)
point_array[index].rotate(angle); }

public void scale(double sx, double sy)
{ for (int index = 0; index < point_count; index++)
point_array[index].scale(sx,sy); }

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 3 2

POLYGON CLASS

public static void main(String[] args)

{

System.out.printin("\nTesting the Polygon class");

Il Test Constructors and setters and getters

Polygon poly1 = new Polygon();

poly1.addPoint(new Point(3,7));

poly1.addPoint(new Point(6,1));

poly1.addPoint(new Point(4,5));

System.out.printin("poly1 =" + poly1.toString());
System.out.printin("poly1.getPoint(1) = " + poly1.getPoint(1).toString());

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 3 3

POLYGON CLASS

Il Test constructors and setters and getters

Polygon poly2 = new Polygon(poly1);

poly2.addPoint(new Point(2,8));

poly2.addPoint(new Point(9,0));

System.out.printin("poly2 =" + poly2.toString());
System.out.printin("poly2.getPoint(3) = " + poly2.getPoint(3).toString());

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 3 4

POLYGON CLASS

Il Test geometric methods

poly1.translate(1,1);

System.out.printin("poly1.translate(1,1) = " + poly1.toString());
poly1.scale(0.5,2);

System.out.printin("poly1.scale(0.5,2) = " + poly1.toString());
poly2.rotate(Math.Pl/2);

System.out.printin("poly2.rotate(P1/2) =" + poly2.toString());

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 3 5

POLYGON CLASS

Sample Program Output

Testing the Polygon class

poly1 = (3.00, 7.00) (6.00, 1.00) (4.00, 5.00)

poly1.getPoint(1) = (6.00, 1.00)

poly2 = (3.00, 7.00) (6.00, 1.00) (4.00, 5.00) (2.00, 8.00) (9.00, 0.00)
poly2.getPoint(3) = (2.00, 8.00)

poly1.translate(1,1) = (4.00, 8.00) (7.00, 2.00) (5.00, 6.00)
poly1.scale(0.5,2) = (2.00, 16.00) (3.50, 4.00) (2.50, 12.00)
poly2.rotate(P1/2) = (-7.00, 3.00) (-1.00, 6.00) (-5.00, 4.00)

(-8.00, 2.00) (0.00, 9.00)

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 36

CODE DEMO

Polygon.java

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 37

SUMMARY

= |n this section, we described three advanced classes

= The Point class stores (x,y) coordinates
= The Line class is defined using two Point objects
= The Polygon class is defined using an array of Points

= The geometric operations in the Line class and the
Polygon class call methods in the Point class

= We also illustrated how to do unit testing

= Write main program that calls all methods in a class
= Print results and verify correctness by hand

(c) Prof. John Gauch, Univ of Arkansas, 2020 1 3 8

	Slide 1: CLASSES and OOP
	Slide 2: overview
	Slide 3: overview
	Slide 4: overview
	Slide 5: OVERVIEW
	Slide 6: classes
	Slide 7: Designing classes
	Slide 8: Designing classes
	Slide 9: Designing classes
	Slide 10: Designing classes
	Slide 11: Designing classes
	Slide 12: Designing classes
	Slide 13: Designing classes
	Slide 14: Time class example
	Slide 15: Time class example
	Slide 16: Time class example
	Slide 17: Time class example
	Slide 18: Time class example
	Slide 19: Time class example
	Slide 20: Time class example
	Slide 21: Time class example
	Slide 22: Time class example
	Slide 23: summary
	Slide 24: classes
	Slide 25: Implementing classes
	Slide 26: Implementing classes
	Slide 27: Implementing classes
	Slide 28: Implementing classes
	Slide 29: Implementing classes
	Slide 30: Implementing classes
	Slide 31: Implementing classes
	Slide 32: Implementing classes
	Slide 33: CODE DEMO
	Slide 34: Error checking
	Slide 35: Error checking
	Slide 36: Error checking
	Slide 37: Error checking
	Slide 38: Error checking
	Slide 39: Error checking
	Slide 40: summary
	Slide 41: classes
	Slide 42: Creating objects
	Slide 43: Creating objects
	Slide 44: Creating objects
	Slide 45: Calling methods
	Slide 46: Calling methods
	Slide 47: Calling methods
	Slide 48: Unit testing
	Slide 49: Unit testing
	Slide 50: Unit testing
	Slide 51: summary
	Slide 52: classes
	Slide 53: Simple class examples
	Slide 54: Simple class examples
	Slide 55: Student class
	Slide 56: Student class
	Slide 57: Student class
	Slide 58: Student class
	Slide 59: Student class
	Slide 60: Student class
	Slide 61: Student class
	Slide 62: Student class
	Slide 63: CODE DEMO
	Slide 64: Linear class
	Slide 65: Linear class
	Slide 66: Linear class
	Slide 67: Linear class
	Slide 68: Linear class
	Slide 69: Linear class
	Slide 70: Linear class
	Slide 71: Linear class
	Slide 72: Linear class
	Slide 73: Linear class
	Slide 74: Linear class
	Slide 75: Linear class
	Slide 76: Linear class
	Slide 77: CODE DEMO
	Slide 78: summary
	Slide 79: CLASSES
	Slide 80: Advanced classes
	Slide 81: Arrays of objects
	Slide 82: Arrays of objects
	Slide 83: Objects within objects
	Slide 84: Objects within objects
	Slide 85: Objects within objects
	Slide 86: Objects within objects
	Slide 87: Objects as parameters
	Slide 88: Objects as parameters
	Slide 89: Returning objects
	Slide 90: Returning objects
	Slide 91: Private methods
	Slide 92: Public variables
	Slide 93: Public constants
	Slide 94: Copy constructor
	Slide 95: Copy constructor
	Slide 96: Compare method
	Slide 97: Compare method
	Slide 98: Compare method
	Slide 99: summary
	Slide 100: CLASSES
	Slide 101: Advanced class examples
	Slide 102: Advanced class examples
	Slide 103: Point class
	Slide 104: Point class
	Slide 105: Point class
	Slide 106: Point class
	Slide 107: Point class
	Slide 108: Point class
	Slide 109: Point class
	Slide 110: Point class
	Slide 111: Point class
	Slide 112: Point class
	Slide 113: CODE DEMO
	Slide 114: Line class
	Slide 115: Line class
	Slide 116: Line class
	Slide 117: Line class
	Slide 118: Line class
	Slide 119: Line class
	Slide 120: Line class
	Slide 121: Line class
	Slide 122: Line class
	Slide 123: Line class
	Slide 124: Line class
	Slide 125: CODE DEMO
	Slide 126: Polygon class
	Slide 127: Polygon class
	Slide 128: Polygon class
	Slide 129: Polygon class
	Slide 130: Polygon class
	Slide 131: Polygon class
	Slide 132: Polygon class
	Slide 133: Polygon class
	Slide 134: Polygon class
	Slide 135: Polygon class
	Slide 136: Polygon class
	Slide 137: CODE DEMO
	Slide 138: summary

