
PROGRAMMING

BASICS

OVERVIEW

OVERVIEW

▪ What is computer programming?

▪ The objective of programming is to give the computer

detailed instructions to solve a desired problem

▪ Computers have to read and process these instructions so

they have to be written clearly and unambiguously

▪ Hundreds of programming languages have been invented

for this purpose over last 50 years

▪ This class will use the programming language C++

because it is very powerful and widely used in industry

CSCE 2004 - Programming Foundations I 2

OVERVIEW

▪ How do we write programs?

▪ Tools and techniques for writing programs have evolved

over the last 50 years, and continue to evolve today

▪ The goal is to convert abstract goals (what we want the

program to do) into clear and unambiguous instructions for

the computer (in our case C++ code)

▪ The classic software development cycle we will be using

has five stages: plan, design, implement, test, and release

CSCE 2004 - Programming Foundations I 3

OVERVIEW

Plan

Design

ImplementTest

Release

CSCE 2004 - Programming Foundations I 4

The classic software development cycle

Plan:

• Decide what problem we

are trying to solve

• What are program inputs?

• What should the program

output or do?

OVERVIEW

Plan

Design

ImplementTest

Release

CSCE 2004 - Programming Foundations I 5

The classic software development cycle

Design:

• Break the problem into

smaller steps we know

how to solve

• Describe how these steps

should be combined to

solve the problem

OVERVIEW

Plan

Design

ImplementTest

Release

CSCE 2004 - Programming Foundations I 6

The classic software development cycle

Implement:

• Write code that performs

the steps needed to solve

the problem

• Use existing code and

software libraries

whenever possible

OVERVIEW

Plan

Design

ImplementTest

Release

CSCE 2004 - Programming Foundations I 7

The classic software development cycle

Test:

• Run the program with

normal inputs to see if it

produces correct outputs

• Run the program with

incorrect inputs to check

the error handling

OVERVIEW

Plan

Design

ImplementTest

Release

CSCE 2004 - Programming Foundations I 8

The classic software development cycle

Release:

• Distribute the working

program to users

• Collect user feedback to

identify problems to fix and

new features to add

OVERVIEW

Plan

Design

ImplementTest

Release

CSCE 2004 - Programming Foundations I 9

The classic software development cycle

Plan:

• Decide what to do next

with the program

• What new features to add

• What problems/bugs to fix

OVERVIEW

▪ There are many ways to create programs

▪ Manager: Buy all or part of solution from someone else

▪ Mimic: Extend or improve solution to similar problem

▪ Inventor: Create new solution from scratch

▪ We must be part manager, part mimic, part inventor

▪ How can we become great programmers?

▪ Learn programming tools by looking at libraries

▪ Learn programming patterns by looking at examples

▪ Learn programming skills by writing a lot of code

CSCE 2004 - Programming Foundations I 10

OVERVIEW

▪ How will we learn to program?

▪ We will learn the syntax of the language

▪ How to write instructions

▪ We will learn semantics of the language

▪ What the computer does with instructions

▪ We will learn problem solving techniques

▪ How to break problems into smaller pieces to solve

▪ We will learn how to test and evaluate programs

▪ How to find and fix bugs

CSCE 2004 - Programming Foundations I 11

OVERVIEW

▪ Lesson objectives:

▪ Learn the structure of C++ programs

▪ Learn how program input / output works

▪ Learn about C++ variables and data types

▪ Study example program using programming basics

▪ Complete online lab on programming basics

▪ Complete programming project on programming basics

CSCE 2004 - Programming Foundations I 12

PROGRAMMING

BASICS

PART 1

WHAT MAKES A PROGRAM?

WHAT MAKES A

PROGRAM?

▪ A program is a sequence of instructions to a computer

▪ Every programming language has its own “rules”

describing how these instructions should be written

▪ These rules define the “syntax” of the language

▪ When the program runs, it will execute your written

instructions one line at a time

▪ For us to understand what a program will do, we need to

know the meaning or “semantics” of each instruction

▪ In this section, we will focus on the basic layout of a C++

program and fundamental C++ instructions

CSCE 2004 - Programming Foundations I 14

WHAT MAKES A

PROGRAM?

▪ All C++ programs have the following structure:

▪ Introductory comments – explain the purpose of program

▪ Include statements - access to existing function libraries

▪ Global data structures - used to store information (later)

▪ User defined functions - used to decompose problem (later)

▪ Main function - variables and statements for program

▪ The following example C++ program prints the message

“Hello Mom” to the screen

CSCE 2004 - Programming Foundations I 15

WHAT MAKES A

PROGRAM?

// This program prints a message

#include <iostream>

using namespace std;

int main()

{

cout << “Hello Mom\n”;

return 0 ;

}

CSCE 2004 - Programming Foundations I 16

This C++ comment line

starts with a // and

describes the purpose

of the program

WHAT MAKES A

PROGRAM?

// This program prints a message

#include <iostream>

using namespace std;

int main()

{

cout << “Hello Mom\n”;

return 0 ;

}

CSCE 2004 - Programming Foundations I 17

These instructions tell

the C++ compiler that

we want to use the

standard C++ input

output library

WHAT MAKES A

PROGRAM?

// This program prints a message

#include <iostream>

using namespace std;

int main()

{

cout << “Hello Mom\n”;

return 0 ;

}

CSCE 2004 - Programming Foundations I 18

This is the main function

where the program begins

executing C++ instructions

This is the line of code that

prints the “Hello Mom”

message on the screen

WHAT MAKES A

PROGRAM?

// This program prints a message

#include <iostream>

using namespace std;

int main()

{

cout << “Hello Mom\n”;

return 0 ;

}

CSCE 2004 - Programming Foundations I 19

This C++ command

ends the program, so it

should be the last line

in the main function

HOW TO CREATE AND

RUN A PROGRAM

▪ Step 1 – Type your C++ program using a text editor and

save as a file on disk

▪ % gedit hello.cpp

▪ % represents the Linux command prompt

▪ hello.cpp is a human-readable file with your C++ program

▪ hello.cpp is called your “source code” file

▪ the filename for C++ code must end in .cpp

CSCE 2004 - Programming Foundations I 20

HOW TO CREATE AND

RUN A PROGRAM

▪ Step 2 – Translate your source code into machine code

using a C++ compiler

▪ % g++ -Wall hello.cpp –o hello

▪ g++: the name of the C++ compiler

▪ -Wall: parameter to compiler to turn all warnings on

▪ hello.cpp: the name of the source code file

▪ -o hello: the name of the output machine code file

▪ hello is called the “executable file”

CSCE 2004 - Programming Foundations I 21

HOW TO CREATE AND

RUN A PROGRAM

▪ Step 3 – Execute your program from the Linux command

▪ % ./hello

▪ ./ is the name for the current directory

▪ hello is the name of the file you want to execute

▪ Step 4 – Examine your program output on the screen

• If the output is not what you expected

• Use your editor to modify the source code

• Recompile your program

• Run the program again

• Repeat until program is working correctly

CSCE 2004 - Programming Foundations I 22

SUMMARY

▪ In this section we have studied what a program is and

what the basic parts of a C++ program are:

▪ Comments describing the goals of the program

▪ Include statements that let us use the input/output libraries

▪ The main function containing the code we want to run

▪ The return statement at the end of the program

CSCE 2004 - Programming Foundations I 23

PROGRAMMING

BASICS

PART 2

STORING DATA

VARIABLES AND

DATA TYPES

▪ The most common C++ data types are:

▪ int – stores positive or negative integers (32 bit)

▪ float – stores positive or negative real numbers (32 bit)

▪ char – stores single character like 'A' .. 'Z'

▪ string – stores sequences of characters like “hello mom”

▪ Other C++ data types include:

▪ long – stores larger integer values (64 bit)

▪ double – stores larger real numbers (64 bit)

▪ bool – stores Boolean values (true/false)

CSCE 2004 - Programming Foundations I 25

VARIABLES AND

DATA TYPES

▪ We allocate space in the computer memory for data by
declaring variables in our program

▪ This memory is not automatically initialized

▪ The C++ syntax for variable declaration is: “data_type name;”

▪ data_type: This specifies what kind of data can be stored

▪ name: We refer to variables by name to perform operations

▪ Example:

int Age; // Can store age in years

float Height; // Can store height in meters

char Gender; // Can store 'M' or 'F' for gender

string Name; // Can store “John” or “Susan” for name

CSCE 2004 - Programming Foundations I 26

VARIABLES AND

DATA TYPES

▪ Syntax rules for variable names:

▪ Names may contain upper or lower case characters

▪ Names may also contain the digits 0..9 and the underscore

character, but NO other characters are allowed

▪ Names must start with an upper or lower case character

▪ Incorrect variable declarations

int float; // Can not use reserved word ‘float’ as a name

float 2pi; // Can not start the name of a variable with digit

int num // Semi-colon at end of line is missing

CSCE 2004 - Programming Foundations I 27

VARIABLES AND

DATA TYPES

▪ Make your variable names meaningful

▪ “the_persons_middle_name” is a bit much to type

▪ “n” is just to short to have any meaning

▪ “per_mid_nme” is too cryptic

▪ “middle_name” is about right

▪ There are several programming conventions for variables

with multi-part names

▪ Use underscore characters: “person_age”

▪ Use capital letters for each part: “PersonAge”

▪ Use capital letters for all but first part: “personAge”

CSCE 2004 - Programming Foundations I 28

VARIABLES AND

DATA TYPES

▪ It is possible to save space in your program by declaring

several variables of the same data type on one line

▪ Generally these variables logically belong together

▪ The C++ syntax for this is: “type name1, name2, name3;”

float x, y, z; // Coordinate of 3D point

int height, length, width; // Dimensions of a box

string first_name, last_name; // Student’s full name

CSCE 2004 - Programming Foundations I 29

VARIABLES AND

DATA TYPES

▪ It is a good programming practice to initialize all variables

when they are declared

▪ This way we know for sure what the variables contain

▪ Otherwise, the compiler will give variables a random value

▪ The C++ syntax for this is: “data_type name = value;”

int Answer = 42; // Answer to ultimate question

float Height = 0.0; // Height in meters

char Gender = ‘F’; // Gender of person

string Name = “Susan”; // Name of person

CSCE 2004 - Programming Foundations I 30

CONSTANTS

▪ Constants are like variables but they never change value

▪ For example, the quantity PI = 3.14159265… should

remain unchanged throughout the program

▪ We define constants in C++ by adding the reserved word

“const” before a variable declaration

▪ We must provide the value of constant at declaration time

▪ Constants can be of any variable data type

CSCE 2004 - Programming Foundations I 31

CONSTANTS

▪ Example:

const int SILLY = 42; // My favorite number

const float PI = 3.14159; // My second favorite number

const char YES = 'Y'; // Example of character constant

▪ Conventions when using constants:

▪ Constant names are normally written in upper case

▪ Constants are added just below the include statements in

a program so they can be used by the whole program

CSCE 2004 - Programming Foundations I 32

ASSIGNMENT

STATEMENTS

▪ The operator “=” is used to assign data into a variable

▪ The C++ syntax for assignment is: “name = value;”

▪ name: the variable we wish to copy data into

▪ value: the data we want to store in the variable

▪ Be sure to put a semicolon at end of the statement

CSCE 2004 - Programming Foundations I 33

ASSIGNMENT

STATEMENTS

▪ C++ will automatically convert data types if possible

▪ If variable and value are same type – no conversion

▪ If variable is more accurate – no data loss will occur

▪ If variable is less accurate – conversion will lose data
(most compilers will give you a warning message)

▪ Example:

int data1 = 42; // int value 42 is stored

float data2 = 42; // float value 42.0 is stored

int data3 = 4.2; // int value 4 is stored (0.2 is discarded)

float data4 = 4.2; // float value 4.2 is stored

int data5 = “hello”; // will not compile

CSCE 2004 - Programming Foundations I 34

ASSIGNMENT

STATEMENTS

▪ Example:

int Value, Number;

float Data;

Data = 2.158; // Data variable now equals 2.158

Value = 17; // Value variable now equals 17

Number = Value; // Number variable now equals 17

Data = 42; // Data variable now equals 42.0

Number = 3.14159; // Number variable now equals 3

CSCE 2004 - Programming Foundations I 35

The floating point value

will be truncated and the

0.14159 will be discarded

SUMMARY

▪ In this section, we have studied how C++ variables are

declared and to store information

▪ Basic data types of the language

▪ Rules for choosing variable names

▪ How to initialize variables

▪ Next we showed how constants can be created

▪ Finally, we described the C++ assignment statement

▪ What happens if we store integer values in float variables

▪ What happens if we store float values in integer variables

CSCE 2004 - Programming Foundations I 36

PROGRAMMING

BASICS

PART 3

PROGRAM INPUT / OUTPUT

PROGRAM

INPUT / OUTPUT

▪ We need some way to get data in and out of program

▪ Input commands read values entered on the keyboard

▪ Output commands write values onto the screen

CSCE 2004 - Programming Foundations I 38

computerkeyboard screen

Input

command

Output

command

PROGRAM INPUT /

OUTPUT

▪ Many C++ programs have the following pattern:

▪ Print a message to the user with input instructions

▪ Read the input typed by the user

▪ Print the input values just read by program

▪ Do some calculations with the input

▪ Print the results of the calculations

▪ Next we will go over C++ input / output commands

▪ Cin command for input

▪ Cout command for output

CSCE 2004 - Programming Foundations I 39

PROGRAM INPUT

▪ The C++ input command is: cin >> variable;

▪ The “cin” part tell the computer to read from the keyboard

▪ The “>>” part tells the computer to read something

▪ The “variable” tells the computer where to store the data

▪ How is this done?

▪ First, cin will skip over spaces or return characters

▪ Then, cin will read characters from the keyboard

▪ Then, cin will convert characters to desired data type

▪ Finally, cin will store a value in the variable

▪ Read and convert steps will vary for different data types

CSCE 2004 - Programming Foundations I 40

PROGRAM INPUT

▪ Integer input example:

int number1;

cin >> number1;

▪ The user types in a sequence of characters “123”

▪ The system skips over leading spaces or carriage returns

▪ Then the system reads all characters that are digits

▪ Then the system converts “123” into an integer 123 and

stores this value in the variable number1

CSCE 2004 - Programming Foundations I 41

PROGRAM INPUT

▪ Float input example:

float number2;

cin >> number2;

▪ The user types in a sequence of characters “3.14159”

▪ The system skips over leading spaces or carriage returns

▪ Then the system reads all characters that are digits then it

reads the “.” then it reads more digit characters

▪ Then the system converts “3.14159” into a float value

3.14159 and stores this value in the variable number2

CSCE 2004 - Programming Foundations I 42

PROGRAM INPUT

▪ More on reading float variables…

▪ The user can omit the digits after the decimal point and

the cin command will assume they are 0

▪ User input “42.” will be treated like “42.0”

▪ The user can omit the digits before the decimal point and

the cin command will assume they are 0

▪ User input “.125” will be treated like “0.125”

CSCE 2004 - Programming Foundations I 43

PROGRAM INPUT

▪ Character input example:

char ch;

cin >> ch;

▪ The user types in a single character ‘y’

▪ The system skips over leading spaces or carriage returns

▪ Then the system reads a single character ‘y’

▪ Then the system stores this character ‘y’ in the variable ch

CSCE 2004 - Programming Foundations I 44

PROGRAM INPUT

▪ String input example:

string str;

cin >> str;

▪ The user types in a sequence of characters “hello”

▪ The system skips over leading spaces or carriage returns

▪ Then the system reads sequence of characters “hello”

▪ Then the system stores this string in the variable str

CSCE 2004 - Programming Foundations I 45

PROGRAM INPUT

▪ How can we read multiple values from the user?

▪ Solution 1: Use several cin statements

int num1, num2;

cin >> num1;

cin >> num2;

▪ Solution 2: Use a sequence of >> within the cin statement

float val1, val2;

cin >> val1 >> val2;

CSCE 2004 - Programming Foundations I 46

First value user types goes in num1

Second value entered goes in num2

First value user types goes in val1

Second value entered goes in val2

PROGRAM INPUT

▪ Common input errors:

▪ Not enough user input

▪ Cin command will cause program to stop and wait for the

user to enter more data

▪ Too much user input

▪ Cin will read only the characters it needs to assign a value

to the input variable, the rest is left unread

▪ Invalid input

▪ Cin will not read any characters, and the input variable will

be unchanged by the cin command

CSCE 2004 - Programming Foundations I 47

PROGRAM INPUT

▪ Examples of not enough user input:

▪ User types nothing when input variable is a float

▪ cin >> val;

▪ Nothing is read and stored in the variable

▪ The program will just sit and wait for input

▪ User types “42” when cin is expecting two integers

▪ cin >> num1 >> num2;

▪ The value 42 is stored in num1

▪ The program will just sit and wait for second input

CSCE 2004 - Programming Foundations I 48

PROGRAM INPUT

▪ Examples of too much user input:

▪ User types “hello mom” when input variable is a string

▪ cin >> str;

▪ The string “hello” will be read and stored in the variable

▪ The remaining input “ mom” will be unread

▪ User types “yes” when input variable is a character

▪ cin >> ch;

▪ The character ‘y’ is read and stored in the variable

▪ The remaining input “es” will be unread

CSCE 2004 - Programming Foundations I 49

PROGRAM INPUT

▪ Examples of invalid input:

▪ User types “123” when input variable is a string

▪ cin >> str;

▪ The string “123” will be read and stored in the variable

▪ User types “hello” when input variable is an integer

▪ cin >> num;

▪ There are no digits in “hello”, so cin will not read any

characters, and the input variable will be set to zero

CSCE 2004 - Programming Foundations I 50

PROGRAM OUTPUT

▪ The C++ output command is: cout << variable;

▪ The “cout” part tell the computer to write to the screen

▪ The “<<” part tells the computer to write something

▪ The “variable” tells the computer what data to write

▪ How is this done?

▪ First, cout will look at variable to get its value

▪ Then, cout will convert value to sequence of characters

▪ Then, cout will output these characters on the monitor

▪ The convert step will vary for different data types

CSCE 2004 - Programming Foundations I 51

PROGRAM OUTPUT

▪ Integer output example:

float number1 = 123;

cout << number1;

▪ The system converts the integer value of the variable 123

to a sequence of ascii characters “123”

▪ The system displays the characters “123” on the screen at

the current cursor position

CSCE 2004 - Programming Foundations I 52

PROGRAM OUTPUT

▪ Float output example:

float number2 = 3.14;

cout << number2;

▪ The system converts the float value of the variable 3.14 to

a sequence of ascii characters “3.14”

▪ The system displays the characters “3.14” on the screen at

the current cursor position

CSCE 2004 - Programming Foundations I 53

PROGRAM OUTPUT

▪ Character output example:

char ch = ‘y’;

cout << ch;

▪ No conversion to ascii character is needed since the

variable is already an ascii character

▪ The system displays the character “y” on the screen at the

current cursor position

CSCE 2004 - Programming Foundations I 54

PROGRAM OUTPUT

• String output example:

string str = “hello mom”;

cout << str;

▪ No conversion to ascii character is needed since the

variable is already a sequence of ascii characters

▪ The system displays the character “hello mom” on the

screen at the current cursor position

CSCE 2004 - Programming Foundations I 55

PROGRAM OUTPUT

▪ Spaces are NOT automatically written between values

▪ int var1=42, var2=17;

▪ cout << var1;

▪ cout << var2;

▪ This will print “4217” without spaces between values

▪ We must print the spaces between values ourselves

▪ int var1=42, var2=17;

▪ cout << var1 << “ ”;

▪ cout << var2 << “ ”;

▪ This will print “42 17 ” with spaces after both values

CSCE 2004 - Programming Foundations I 56

PROGRAM OUTPUT

▪ We can use the reserved word “endl” to print a carriage

return after data values

▪ int var1=42, var2=17;

▪ cout << val1 << endl;

▪ cout << val2 << endl;

▪ This will print “42” on one line and “17” on the next line

CSCE 2004 - Programming Foundations I 57

PROGRAM OUTPUT

▪ We can also print out any of the following special

characters inside a string to format our output

CSCE 2004 - Programming Foundations I 58

\n Carriage return

\t Tab character

\b Back space

\f Form feed

\a Bell sound

\’ Single quote

\” Double quote

\\ Backslash character

PROGRAM OUTPUT

Example:

// Initialize student information

string first = "John";

string last = "Smith";

int age = 21;

float gpa = 3.14;

// Print student information

cout << "First Name:\t" << first << "\n";

cout << "Last Name:\t" << last << "\n";

cout << "Age:\t\t" << age << "\n";

cout << "GPA:\t\t" << gpa << "\n”;

CSCE 2004 - Programming Foundations I 59

We are printing tab and

carriage return characters to

make the output look nice

PROGRAM OUTPUT

Sample program output:

First Name: John

Last Name: Smith

Age: 21

GPA: 3.14

CSCE 2004 - Programming Foundations I 60

Notice how all output

is nicely aligned with

each other

COMMENTS

▪ Comments are an essential part of all programs

▪ Comments are used to explain the design and

implementation of a program

▪ They are human readable and are ignored by the compiler

▪ Programmers should write comments as the program is

being written and when major changes are made

▪ Do NOT wait “until the program is finished” to write your

comments

▪ Comments are there to help you write the program

▪ In real life, programs are never “finished”, there are always

security updates and new features added

CSCE 2004 - Programming Foundations I 61

COMMENTS

▪ C++ supports two types of comments

▪ C++ style comments are a single line long (recommended)

▪ These comments start with // and go to end of the line

// Here is a new C++ style comment

// This is the second line of the comment

▪ C style comments can span multiple lines (in older code)

▪ These comments start with /* and end with */

/* Here is an old C style comment

This is the second line of the comment */

CSCE 2004 - Programming Foundations I 62

SUMMARY

▪ In this section we have studied the “cin” command for

reading and storing information from users

▪ We also discussed the “cout” command for writing

variables and other information to the screen

▪ Finally, have described how C++ comments are formed

and their importance in writing clear programs

CSCE 2004 - Programming Foundations I 63

PROGRAMMING

BASICS

PART 4

NUMERICAL CALCULATIONS

ARITHMETIC

EXPRESSIONS

▪ Arithmetic expressions are used to perform numerical

calculations using variables and arithmetic operators

▪ Once the values of arithmetic expressions are evaluated,

they can be printed out using cout, or stored in variables

using the assignment operator

▪ The rules for arithmetic expressions in C++ is very similar

to the rules we learn in mathematics, but there are some

subtle differences we will discuss below

CSCE 2004 - Programming Foundations I 65

ARITHMETIC

EXPRESSIONS

▪ What is the syntax for arithmetic expressions?

▪ Arithmetic expressions consist of an alternating sequence

of values and arithmetic operators

▪ Values can be numerical literals, variables, or constants

▪ Arithmetic operators include

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo (remainder after integer division)

▪ Parentheses () can be used to control the order of

evaluation of sub-expressions

CSCE 2004 - Programming Foundations I 66

ARITHMETIC

EXPRESSIONS

▪ Examples of valid arithmetic expressions:

▪ 7 + 2 * 5

▪ 21 - num / 2

▪ (2 + 2 + 2) / (3 - 3 - 3)

▪ Examples of invalid arithmetic expressions:

▪ 17 * missing value after * operator

▪ (num - 9 * 5 missing closing parenthesis

▪ cin + 42 cin is not a valid variable name

CSCE 2004 - Programming Foundations I 67

ARITHMETIC

EXPRESSIONS

▪ How are expressions evaluated?

▪ We follow the “natural” rules of mathematics

▪ Multiplication, division, modulo have high precedence

▪ Addition, subtraction have low precedence

▪ The result of high precedence operations are calculated

before low precedence operations (i.e. * before +)

▪ Operations in the expression are calculated left to right at

same precedence level

▪ Parenthesized expressions () are calculated first, and are

evaluated from the inside out

CSCE 2004 - Programming Foundations I 68

ARITHMETIC

EXPRESSIONS

▪ Evaluation examples:

▪ 7 + 2 * 5

= 7 + 10 perform multiplication

= 17 perform addition

▪ 21 - num / 2

= 21 - 10 / 2 substitute variable value

= 21 - 5 perform division

= 16 perform subtraction

CSCE 2004 - Programming Foundations I 69

ARITHMETIC

EXPRESSIONS

▪ Evaluation examples:

▪ (2 + 2 + 2) / (3 - 3 - 3)

= (4 + 2) / (3 - 3 - 3) perform leftmost addition

= 6 / (3 - 3 - 3) perform addition

= 6 / (0 - 3) perform leftmost subtraction

= 6 / -3 perform subtraction

= -2 perform division

CSCE 2004 - Programming Foundations I 70

ARITHMETIC

EXPRESSIONS

▪ What happens if we mix data types in expressions?

▪ C++ will look at the data types and choose the most

accurate data type for each arithmetic operation

▪ The ordering of data types from least accurate to most

accurate is: char, short, int, long, float, double

int OP int int result

char OP int int result

int OP float float result

float OP double double result

CSCE 2004 - Programming Foundations I 71

ARITHMETIC

EXPRESSIONS

▪ Mixed type examples:

▪ 3 * 5 + 4.2

= 15 + 4.2 integer multiplication

= 19.2 float addition

▪ (16 - num) / 4.0

= (16 - 10) / 4.0 variable substitution

= 6 / 4.0 integer subtraction

= 1.5 float division

CSCE 2004 - Programming Foundations I 72

ARITHMETIC

EXPRESSIONS

▪ In C++ there is an important difference between float

division and integer division

▪ Float division always returns a float result

▪ 3.0 / 2.0 = 1.5

▪ Integer division always returns an integer result

▪ 3 / 2 = 1 the 0.5 is discarded !!

CSCE 2004 - Programming Foundations I 73

ARITHMETIC

EXPRESSIONS

▪ Integer division examples:

▪ (16 - num) / 4

= (16 - 10) / 4 variable substitution

= 6 / 4 integer subtraction

= 1 integer division (0.5 discarded)

▪ (1 + 2) / (3 + 6)

= 3 / (3 + 6) integer addition

= 3 / 9 integer addition

= 0 integer division (0.333 discarded)

CSCE 2004 - Programming Foundations I 74

ARITHMETIC

EXPRESSIONS

▪ In C++ modulo operator % is used to calculate the value of

the remainder after an integer division

▪ Both arguments to the % operator must be integers

▪ If not the compiler will give error messages

▪ Modulo operator examples:

▪ 285 % 10

= 5 285 / 10 = 28, remainder is 5

▪ 285 % 100

= 85 285 / 100 = 2, remainder is 85

CSCE 2004 - Programming Foundations I 75

TYPE CASTING

▪ C++ will do implicit type conversion in assignment

statements if the value type does not match variable type

▪ The value is converted to match the variable type

▪ Sometimes compilers will warn of possible loss of data

▪ Examples:

▪ int num = 4.2; // value 4 is stored

▪ float val = 17; // value 17.0 is stored

▪ int sum = 1 + 2.0; // value 3 is stored

▪ float total = num + sum; // value of 7.0 is stored

CSCE 2004 - Programming Foundations I 76

TYPE CASTING

▪ Type casting in C++ lets us convert a value from one data

type to another in the middle of arithmetic expressions

▪ This is very useful if we want to force the expression to use

integer operations or float operations

▪ There are two equivalent ways do type casting

▪ (data_type) value

▪ static_cast<data_type>(value)

▪ Type casting has the highest precedence, so the type

conversion is done before the next arithmetic operation

CSCE 2004 - Programming Foundations I 77

TYPE CASTING

▪ Type casting examples:

▪ 2 / 3

= 0 integer division

▪ (float) 2 / 3

= 2.0 / 3 converts value to float

= 0.666 float division

▪ 1 / static_cast<float>(3)

= 1 / 3.0 converts value to float

= 0.333 float division

CSCE 2004 - Programming Foundations I 78

SPHERE EXAMPLE

▪ Assume we want to calculate the volume and surface area

of a sphere of any size

▪ How can we perform this calculation?

▪ Look up formulas for sphere volume and surface area

▪ How can we implement this?

▪ Write a program to prompt user for sphere radius

▪ Calculate sphere volume and surface area

▪ Print the results of these calculations

CSCE 2004 - Programming Foundations I 79

SPHERE EXAMPLE

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

// Local variable declarations

// Read sphere radius and echo input

// Calculate volume and surface area

// Print output

return 0;

}

CSCE 2004 - Programming Foundations I 80

With the first version of

the program we just

type in comments to

describe our approach

The rest of the

program is our

“standard empty

program” boiler plate

SPHERE EXAMPLE

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

// Local variable declarations

float Radius = 0.0;

float Volume = 0.0;

float Area = 0.0;

CSCE 2004 - Programming Foundations I 81

Next we add code for

the each of the steps in

our approach one

chunk of code at a time

SPHERE EXAMPLE

…

// Read sphere radius and echo input

cout << "Enter sphere radius: ";

cin >> Radius;

cout << "Radius = " << Radius << endl;

…

CSCE 2004 - Programming Foundations I 82

It is always a good idea to

print the values you have

read from the user to verify

cin worked as expected

SPHERE EXAMPLE

…

// Calculate sphere volume

Volume = (4.0 / 3.0) * M_PI * Radius * Radius * Radius;

// Calculate sphere surface area

Area = 4.0 * M_PI * Radius * Radius;

…

CSCE 2004 - Programming Foundations I 83

M_PI = 3.141592653 is

a constant defined in

the <cmath> library

We are using float literals here to

force the result to be a float value

(using 4/3 would produce incorrect

result due to integer division)

SPHERE EXAMPLE

…

// Print output

cout << "Volume = " << Volume << endl;

cout << "Area = " << Area << endl;

return 0 ;

}

CSCE 2004 - Programming Foundations I 84

Finally we add the code

to output our answers

SPHERE EXAMPLE

To compile on a Linux system:

g++ -Wall sphere.cpp -o sphere

To run on a Linux system:

./sphere

CSCE 2004 - Programming Foundations I 85

SPHERE EXAMPLE

Sample program output:

Enter sphere radius: 1.0

Radius = 1

Volume = 4.18879

Area = 12.5664

Enter sphere radius: 10

Radius = 10

Volume = 4188.79

Area = 1256.64

CSCE 2004 - Programming Foundations I 86

SOFTWARE

ENGINEERING TIPS

▪ Think about the problem you are trying to solve before
you start writing your program

▪ What data do you need to solve problem?

▪ What formulas are you going to use?

▪ Work out a few examples by hand to be sure you
understand the process you are going to use

▪ Start your program by writing your comments

▪ Add your name and date at top of program

▪ Describe steps in program in point form

▪ Add code to your program a little at a time

▪ Compile and test program incrementally

CSCE 2004 - Programming Foundations I 87

SOFTWARE

ENGINEERING TIPS

▪ Top-down problem solving has the following steps:

▪ Understand the problem to be solved

▪ Decompose problem into smaller pieces you can solve

▪ Write computer instructions for each piece

▪ Combine pieces into a single program

▪ Compile, test, and debug program

▪ Use program to solve initial problem

CSCE 2004 - Programming Foundations I 88

SOFTWARE

ENGINEERING TIPS

▪ Bottom-up problem solving has the following steps:

▪ Understand the problem to be solved

▪ Look at similar problems to identify common components

▪ Design and implement general purpose components

▪ Combine components into a single program

▪ Compile, test, and debug program

▪ Use program to solve initial problem

CSCE 2004 - Programming Foundations I 89

SOFTWARE

ENGINEERING TIPS

▪ Make your program easy to read and understand

▪ Pick variable names that are meaningful to you and others

▪ Add blank lines and white space to separate calculations

▪ Indent your code using a consistent convention

▪ Make sure your program is running correctly

▪ Initialize all variables before you use their values

▪ Print out intermediate results as you debug code

▪ Test with “normal” and “unexpected” input values

▪ Document all known bugs/limitations in the code

CSCE 2004 - Programming Foundations I 90

SUMMARY

▪ In this section we have studied the syntax and use of

arithmetic expressions to do numerical calculations

▪ We also showed an example program demonstrating the

use of arithmetic expressions and input/output

▪ Finally, have discussed several software engineering tips

for creating and debugging programs

CSCE 2004 - Programming Foundations I 91

	Slide 1: Programming basics
	Slide 2: OVERVIEW
	Slide 3: OVERVIEW
	Slide 4: Overview
	Slide 5: Overview
	Slide 6: Overview
	Slide 7: Overview
	Slide 8: Overview
	Slide 9: Overview
	Slide 10: OVERVIEW
	Slide 11: OVERVIEW
	Slide 12: overview
	Slide 13: Programming basics
	Slide 14: What makes a program?
	Slide 15: What makes a program?
	Slide 16: What makes a program?
	Slide 17: What makes a program?
	Slide 18: What makes a program?
	Slide 19: What makes a program?
	Slide 20: How to create and run a program
	Slide 21: How to create and run a program
	Slide 22: How to create and run a program
	Slide 23: Summary
	Slide 24: Programming basics
	Slide 25: Variables and Data types
	Slide 26: Variables and Data types
	Slide 27: Variables and Data types
	Slide 28: Variables and Data types
	Slide 29: Variables and Data types
	Slide 30: Variables and Data types
	Slide 31: constants
	Slide 32: constants
	Slide 33: Assignment statements
	Slide 34: Assignment statements
	Slide 35: Assignment statements
	Slide 36: Summary
	Slide 37: Programming basics
	Slide 38: Program input / output
	Slide 39: Program input / output
	Slide 40: Program input
	Slide 41: Program input
	Slide 42: Program input
	Slide 43: Program input
	Slide 44: Program input
	Slide 45: Program input
	Slide 46: Program input
	Slide 47: Program input
	Slide 48: Program input
	Slide 49: Program input
	Slide 50: Program input
	Slide 51: Program output
	Slide 52: Program output
	Slide 53: Program output
	Slide 54: Program output
	Slide 55: Program output
	Slide 56: Program output
	Slide 57: Program output
	Slide 58: Program output
	Slide 59: Program output
	Slide 60: Program output
	Slide 61: comments
	Slide 62: comments
	Slide 63: Summary
	Slide 64: Programming basics
	Slide 65: Arithmetic expressions
	Slide 66: Arithmetic expressions
	Slide 67: Arithmetic expressions
	Slide 68: Arithmetic expressions
	Slide 69: Arithmetic expressions
	Slide 70: Arithmetic expressions
	Slide 71: Arithmetic expressions
	Slide 72: Arithmetic expressions
	Slide 73: Arithmetic expressions
	Slide 74: Arithmetic expressions
	Slide 75: Arithmetic expressions
	Slide 76: Type casting
	Slide 77: Type casting
	Slide 78: Type casting
	Slide 79: Sphere example
	Slide 80: Sphere example
	Slide 81: Sphere example
	Slide 82: Sphere example
	Slide 83: Sphere example
	Slide 84: Sphere example
	Slide 85: SPHERE EXAMPLE
	Slide 86: Sphere example
	Slide 87: Software engineering tips
	Slide 88: Software engineering tips
	Slide 89: Software engineering tips
	Slide 90: Software engineering tips
	Slide 91: Summary

