
ARRAYS

OVERVIEW

OVERVIEW

▪ In many programs, we need to store and process a lot of

data with the same data type

▪ Processing test scores to find the class average

▪ Tabulating bank deposits and withdrawals

▪ Displaying images on a computer screen

▪ Arrays in C++ give us a way to accomplish this goal

▪ Declare an array of desired data type and size

▪ Store data values in each array location

▪ Process data values to solve a specific problem

CSCE 2004 - Programming Foundations I 2

OVERVIEW

▪ How do we process data in arrays?

▪ Depends on needs of the application

▪ Some applications create summaries of data in array

▪ Some applications print a subset of data in array

▪ Some applications search for data in the array

▪ Some applications move data around in the array

▪ How to we implement this array processing?

▪ Use iteration to loop over array elements

▪ Use functions to simplify code reuse

CSCE 2004 - Programming Foundations I 3

OVERVIEW

▪ We need to learn a variety of array processing algorithms

in order to become strong C++ programmers

▪ Each array processing algorithm has its pros/cons

▪ Some have faster run times, some are slower

▪ Some take more memory, some take less memory

▪ Some are complex to implement, some are simple

▪ To understand these differences, we must learn scientific

methods for algorithm analysis and program testing

CSCE 2004 - Programming Foundations I 4

OVERVIEW

▪ Lesson objectives:

▪ Learn the syntax for declaring arrays in C++

▪ Learn how to store and process data in arrays

▪ Learn how to search and sort data in arrays

▪ Study example programs showing their use

▪ Complete online labs on arrays

▪ Complete programming project using arrays

CSCE 2004 - Programming Foundations I 5

ARRAYS

PART 1

ARRAY BASICS

DECLARING ARRAYS

▪ Arrays were invented to conveniently store multiple values

of the same data type in one variable

▪ Picture an array as a long box divided into N slots

▪ Array elements are stored in separate memory locations

and accessed based on their position

▪ The first array element is in location 0

▪ The last array element is in location N-1

CSCE 2004 - Programming Foundations I 7

0 1 2 3 … N-1

DECLARING ARRAYS

▪ The syntax for an array declaration is:

data_type array_name [array_size];

where

data_type can be any basic C++ type (int, float, etc.)

array_name follows C++ variable name rules

array_size is an integer or integer constant

CSCE 2004 - Programming Foundations I 8

DECLARING ARRAYS

// Valid array declarations

float Data[100];

int List[20];

const int SIZE = 50;

char Name[SIZE];

CSCE 2004 - Programming Foundations I 9

The array_size can be

specified by an integer

or an integer constant

DECLARING ARRAYS

// Dynamic array declaration

int Size = 0;

while (Size <= 0)

{

cout << "Enter array size: ";

cin >> Size;

}

int Array[Size];

CSCE 2004 - Programming Foundations I 10

Using an integer variable

for array size works on some

but not all C++ compilers

DECLARING ARRAYS

// Invalid array declarations

int Length = -1;

float Data[Length];

int List[31.75];

CSCE 2004 - Programming Foundations I 11

Array size must be

a positive integer

You can not use

floats to specify

the array size

DECLARING ARRAYS

▪ The total number of bytes in memory for an array is given

by (number of elements in array) * (number of bytes for

each element)

float Data[100];

▪ One float takes 4 bytes

▪ Array size is 100 * 4 = 400 bytes

char name[20];

▪ One char takes 1 byte

▪ Array size is 20 * 1 = 20 bytes

CSCE 2004 - Programming Foundations I 12

ARRAY ACCESS

▪ To access an array element, we need to give name of

variable and the index (location) of desired element

▪ Eg: array_name[array_index]

▪ In C++ arrays are always “zero indexed”

▪ The first array element is at location 0

▪ The last array element is at location N-1

▪ If you attempt to use an array index outside the range 0..N-

1 you will get an error when your program is running

CSCE 2004 - Programming Foundations I 13

ARRAY ACCESS

// Valid array access

const int SIZE = 100;

float Data[SIZE];

…

Data[0] = 7;

Total = Total + Data[2];

cout << Data[7];

CSCE 2004 - Programming Foundations I 14

We use variables in an

array just like any other

variable, as long as the

array index is within the

range 0..SIZE-1

ARRAY ACCESS

// Invalid array access

Data[4.3] = 28;

…

Data[-8] = 0.0;

Data[200] ++;

…

cin >> Data;

cout << Data;

CSCE 2004 - Programming Foundations I 15

The array index

can not be a float

Run time errors may

occur if array index is

outside 0..99 range

We can not read

or write a whole

array at one time

ARRAY

INITIALIZATION

▪ It is very important to initialize arrays before use

▪ Using an uninitialized variable can cause major bugs

▪ Arrays are supposed to be initialized to 0 by default

▪ Sadly, this is not true for all C++ compilers, so we should

always do array initialization ourselves to be safe

▪ We can store initial values in an array at declaration time

▪ Give collection of N values to store in array of size N

▪ If fewer than N values are given, the rest are set to 0

▪ Assign an array of same size and data type

CSCE 2004 - Programming Foundations I 16

ARRAY

INITIALIZATION

// Valid array initialization

const int SIZE = 10;

int Value[SIZE] = {3,1,4,1,5,9,2,6,5,3};

int Copy[SIZE] = Value;

…

char Name[SIZE] = {'J', 'O', 'H', 'N'};

...

float Scores[] = {93.5, 92.0, 90.1, 85.7, 83.3, 76.5};

CSCE 2004 - Programming Foundations I 17

Size of this array is determined

by number of values to right (6)

The rest of this character

array is initialized to 0

(the null character)

ARRAY

INITIALIZATION

// Invalid array initialization

float Data[20] = Value;

…

int Numbers[5] = {2,1,4,1,5,1,6};

CSCE 2004 - Programming Foundations I 18

The Value array is a

different size (10) so it

can not be used to

initialize the Data array

The number of initialization

values can not be larger

than the array size

ARRAYS AND LOOPS

▪ It is very natural to use loops to process arrays

▪ Read N input values into an array

▪ Write N output values from an array

▪ Calculate total of N values in array

▪ We must take care to stay within array bounds

▪ Never use index less than 0

▪ Never use index greater than N-1

▪ If you do go outside this 0..N-1 range, it may cause a

"memory segmentation fault” error at run time

CSCE 2004 - Programming Foundations I 19

ARRAYS AND LOOPS

// Input output example

int Data[10];

for (int i = 0; i < 10; i++)

cin >> Data[i];

for (int i = 0; i < 10; i++)

cout << Data[9-i];

CSCE 2004 - Programming Foundations I 20

Loop to read 10 values

into the Data array

Loop to write 10 Data

values in reverse order

ARRAYS AND LOOPS

// Average calculation example

const int SIZE = 10;

int Value[SIZE] = {3,1,4,1,5,9,2,6,5,3};

float Total = 0.0;

for (int pos = 0; pos < SIZE; pos++)

Total = Total + Value[pos];

float Average = Total / SIZE;

CSCE 2004 - Programming Foundations I 21

Here we use the SIZE

constant in the array

declaration and also in

the array processing loop

USING PARTIAL

ARRAYS

▪ What happens if we do not know array size in advance?

▪ It is possible but tricky to allocate dynamic arrays

▪ Easier to declare a large array and use only part of it

▪ How do we do this?

▪ We guess the maximum size needed for the array

▪ Declare the array to be the maximum size needed

▪ We use only part of this array to store our data

▪ We also keep track of how much of the array is currently

being used in a “Count” variable

CSCE 2004 - Programming Foundations I 22

USING PARTIAL

ARRAYS

▪ Example: Reading student grades into an array

▪ Assume the user knows how many grades they will enter

▪ Prompt the user for the grade count

▪ Read the grade count from the user

▪ Loop reading grades into array

▪ Process the grade array in some way

▪ Sample input:

5

78 85 91 88 94

CSCE 2004 - Programming Foundations I 23

USING PARTIAL

ARRAYS

// User enters array count followed by grades

const int SIZE = 1000;

float Grades[SIZE];

int Count = 0;

cout << "Enter count: ";

cin >> Count;

CSCE 2004 - Programming Foundations I 24

We are guessing that the

user waill never want to use

more than 1000 values

We ask the user for how

much of the array they want

to use today

USING PARTIAL

ARRAYS

if (Count > SIZE)

Count = SIZE;

for (int i = 0; i < Count; i++)

{

cout << "Enter grade: ";

cin >> Grade[i];

}

CSCE 2004 - Programming Foundations I 25

We do error checking to

make sure Count <= 1000

We can now loop from 0 up

to Count-1 reading data

from the user into the array

USING PARTIAL

ARRAYS

▪ Example: Reading student grades into an array

▪ Assume the count is not known in advance and the grade

data will be followed by a sentinal value of -1

▪ Read first data value from user

▪ While data value is not the sentinal value

▪ Store the grade in array

▪ Read the next data value from user

▪ Process the grade array in some way

▪ Sample input:

78 85 91 88 94 -1

CSCE 2004 - Programming Foundations I 26

USING PARTIAL

ARRAYS

const int SIZE = 1000;

float Grade[SIZE];

int Count = 0;

float Input = 0.0;

CSCE 2004 - Programming Foundations I 27

We declare an array that

can hold up to 1000 grades

We use Count to tell us how

many were actually read

USING PARTIAL

ARRAYS

// User enters grades followed by -1 sentinel value

cout << "Enter grade: ";

cin >> Input;

while ((Input != -1) && (Count < SIZE))

{

Grade[Count] = Input;

Count = Count + 1;

cout << "Enter grade: ";

cin >> Input;

}

CSCE 2004 - Programming Foundations I 28

We stop reading user input

when 1000 values are

entered or when the user

types -1 sentinel value

ARRAYS AS

PARAMETERS

▪ How do we declare array parameters?

▪ Add the characters [] after the array name in the
parameter declaration to tell compiler this is an array

▪ How do we use array parameters?

▪ Just give the name of the array in the function call

▪ What type of parameter is this?

▪ Arrays are automatically treated as reference parameters

▪ There is no way to pass entire arrays as value parameters

▪ We can add the keyword const before the data type to
make the array parameter read only

CSCE 2004 - Programming Foundations I 29

ARRAYS AS

PARAMETERS

▪ How can we add one to all values in an array?

▪ Write a function to process the array

▪ Declare array parameter

▪ Declare array size parameter

▪ Loop over array in function doing operation

▪ Call this function in the main program

▪ Pass in the name of the array

▪ Pass in the size of the array

CSCE 2004 - Programming Foundations I 30

ARRAYS AS

PARAMETERS

// Declare function to increment all values in an array

void AddOne(const int Size, float Value[])

{

for (int i= 0; i < Size; i++)

Value[i] = Value[i] + 1.0;

}

CSCE 2004 - Programming Foundations I 31

We can call this function

with float arrays of any size

We use the Size parameter

to tell function how large

the input array is

We loop over all of the

elements of the array and

add 1.0 to each value

ARRAYS AS

PARAMETERS

// Call function to process array

float Data[10] = {1,2,3,4,5,6,7,8,9,10};

AddOne(10, Data);

CSCE 2004 - Programming Foundations I 32

The second parameter is

the name of the array we

want to process “Data”

The first parameter

is the size of the

input array “Data”

ARRAYS AS

PARAMETERS

▪ How can copy data values from one array to another?

▪ Write a function to process the arrays

▪ Declare two array parameters

▪ Declare array size parameter

▪ Loop over array in function doing operation

▪ Call this function in the main program

▪ Pass in the names of the arrays

▪ Pass in the size of the arrays

CSCE 2004 - Programming Foundations I 33

ARRAYS AS

PARAMETERS

// Declare function to copy array values

void CopyData(const float In[], float Out[], const int Size)

{

for (int i=0; i < Size; i++)

Out[i] = In[i];

}

CSCE 2004 - Programming Foundations I 34

The array parameter

“Out” can be modified

in function

The array parameter

“In” is a read only and

can not be modifiedWe loop over all of the

elements of the “In” array

and copy the value to “Out”

ARRAYS AS

PARAMETERS

// Call function to process array

float Data1[10] = {1,2,3,4,5,6,7,8,9,10};

float Data2[10] = {0,0,0,0,0,0,0,0,0,0};

CopyData(Data1, Data2, 10);

CSCE 2004 - Programming Foundations I 35

This will copy Data1 data

into the Data2 array

ARRAYS AS

PARAMETERS

// Call function to process array

float Data1[10] = {1,2,3,4,5,6,7,8,9,10};

float Data2[10] = {0,0,0,0,0,0,0,0,0,0};

CopyData(Data2, Data1, 10);

CSCE 2004 - Programming Foundations I 36

This will copy Data2 data

into the Data1 array

ARRAYS AS

PARAMETERS

// Call function to process array

float Data1[10] = {1,2,3,4,5,6,7,8,9,10};

float Data2[10] = {0,0,0,0,0,0,0,0,0,0};

CopyData(10, Data1, Data2);

CSCE 2004 - Programming Foundations I 37

This will cause a compiler

error because the function

parameters are in the

wrong order

ARRAYS AS

PARAMETERS

// Call function to process array

float Data1[10] = {1,2,3,4,5,6,7,8,9,10};

float Data2[10] = {0,0,0,0,0,0,0,0,0,0};

CopyData(Data1, Data2, 20);

CSCE 2004 - Programming Foundations I 38

This will cause array

bounds errors with very

strange side effects

SUMMARY

▪ In this section, we saw how to declare, initialize and

access arrays in C++

▪ We also saw how loops could be used to read/write and

process arrays in different ways

▪ Next, we discussed how arrays can be used to store and

process a variable number of elements

▪ Finally, we showed how arrays can be passed into

functions as parameters

CSCE 2004 - Programming Foundations I 39

ARRAYS

PART 2

ADVANCED ARRAYS

CHARACTER ARRAYS

▪ Arrays of characters in C++ are called cstrings

▪ When C was invented, cstrings were the only way to store
textual information like names and addresses

▪ When C++ was invented, they added the string data type
as another way to store textual information

▪ C++ treats cstrings differently from other arrays

▪ We can initialize a cstring using: char word[10] = “hello”

▪ We can read data into a char array using: cin >> word

▪ We can write data from a char array using: cout << word

▪ We can use a function library to perform other common
operations on arrays of characters

CSCE 2004 - Programming Foundations I 41

CHARACTER ARRAYS

▪ By convention cstrings always end with '\0' null character

▪ If we declare a char array with SIZE=100, we can store up

to 99 characters in the cstring

▪ When we read data into a cstring, the cin command will

automatically add the null char after the user input

▪ When we write data from a cstring, the cout command will

print all characters before the null char

▪ Character and cstring literals

▪ Use single quotes 'a' for character literals

▪ Use double quotes "hi mom" for cstring literals

CSCE 2004 - Programming Foundations I 42

CHARACTER ARRAYS

// Input output example

const int SIZE = 10;

char Password[SIZE];

char Name[SIZE] = "Smith";

cout << "Hello Mr. " << Name << endl;

cout << "Enter Password: ";

cin >> Password;

CSCE 2004 - Programming Foundations I 43

Here we declare two

cstring variables

Here we use cin and

cout to read and write

cstring variables

CHARACTER ARRAYS

▪ We can include <cstring> for additional string functions

▪ strlen(str) – counts the number of characters that are

before the null char in str and returns this value

▪ strcpy(str1, str2) – loops over str2 and copies all str2

characters before the null char into str1 (no error checking

is done to make sure there is room in str1)

▪ strncpy(str1, str2, len) – loops over str2 and copies up to

len characters from str2 to str1 (we can perform basic error

checking by making len equal to the array size of str1)

CSCE 2004 - Programming Foundations I 44

CHARACTER ARRAYS

▪ strcat(str1, str2) – appends a copy of str2 at the end of

the str1 parameter (no error checking is done to ensure

that there is room in the str1 array)

▪ strcmp(str1, str2) – loops over str1 and str2 and

compares these two strings alphabetically up to the null

char and returns an integer code after the comparison

0 if str1 == str2

-1 if str1 < str2

1 if str1 > str2

CSCE 2004 - Programming Foundations I 45

CHARACTER ARRAYS

// Using string functions

cout << "Name length: " << strlen(Name) << endl;

…

// char Copy[SIZE];

strcpy(Copy, Name, SIZE);

…

if (strcmp(Name, Password) == 0)

cout << "Error: You can not use name as the password\n";

CSCE 2004 - Programming Foundations I 46

We can not assign cstring

variables using Copy = Name

We can not compare cstring

variables using Name == Password

CHARACTER ARRAYS

• Problem 1 – wasted memory space

• You need to make the cstring array one character larger

than the largest possible string that could be stored

• You have to decide to either waste memory space or

truncate strings when they are stored

• Problem 2 – potential array bounds problems

• It is very easy to go past the array bounds with a cstring by

simply reading the user’s input “cin >> name”

• This could potentially overwrite another variable and cause

very subtle bugs in the program (hackers love this)

CSCE 2004 - Programming Foundations I 47

2D ARRAYS

▪ In many applications, data can be naturally organized as a

two-dimensional grid of values

▪ Data in a spreadsheet

▪ Pixels in an image

CSCE 2004 - Programming Foundations I 48

2D ARRAYS

▪ Fortunately C++ (and most other languages) will allow us

to define two-dimensional arrays by specifying

▪ The array name

▪ The data type

▪ The number of rows and columns

// Example array declaration

const int ROWS = 5;

const int COLS = 3;

int A[ROWS][COLS];

CSCE 2004 - Programming Foundations I 49

2D ARRAYS

▪ We refer to 2D array locations using [row][column] index

▪ The rows are numbered 0..ROWS-1

▪ The columns are numbered 0..COLS-1

CSCE 2004 - Programming Foundations I 50

A[0][0] A[0][1] A[0][2]

A[1][0] A[1][1] A[1][2]

A[2][0] A[2][1] A[2][2]

A[3][0] A[3][1] A[3][2]

A[4][0] A[4][1] A[4][2]

 columns →


 r

o
w

s
 →

2D ARRAYS

▪ 2D arrays can be initialized much like 1D arrays

▪ We must provide ROWS * COLS values

▪ We use curly brackets to group rows of values

int Scores [3][3] = { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} };

CSCE 2004 - Programming Foundations I 51

1 2 3

4 5 6

7 8 9

2D ARRAYS

▪ Declaring 2D array parameters

▪ We use Data[][COLS] when declaring a 2D array

parameter, where COLS is a predefined constant

▪ We do not need to specify the number of ROWS in the 2D

array when we declare the Data parameter

▪ The number of rows in the 2D array should be given in a

separate parameter (this way the function can handle 2D

arrays with any number of rows)

▪ Passing 2D arrays into functions as parameters

▪ When passing 2D array into a function we just use the

name of the array (just like 1D arrays)

CSCE 2004 - Programming Foundations I 52

2D ARRAYS

▪ Consider the problem of storing and displaying characters

on an old fashioned VT52 computer terminal

▪ VT52s display 24 rows and 80 columns of characters

▪ We need to store these characters in a 2D array

CSCE 2004 - Programming Foundations I 53

2D ARRAYS

// Array declaration

const int ROWS = 24;

const int COLS = 80;

char Screen[ROWS][COLS];

// Array initialization

for (int r = 0; r < ROWS ; r++)

for (int c = 0; c < COLS ; c++)

Screen[r][c] = ' ';

CSCE 2004 - Programming Foundations I 54

Here we declare a

2D array for the

screen

Here we initialize the

screen to all spaces

2D ARRAYS

// Array parameter declaration

void PrintData(const char Data[][COLS], int rows)

{

for (int r = 0; r < rows; r++)

{

for (int c = 0; c < COLS; c++)

cout << Data[r][c];

cout << endl;

}

}

// Array parameter usage

PrintData(Screen, ROWS);

CSCE 2004 - Programming Foundations I 55

Here we loop over

the 2D array to print it

Here we have a 2D

array parameter

2D ARRAYS

▪ Consider the problem of processing student grades that

are stored in a 2D array, with one row per student, and one

column per homework assignment

▪ We can calculate one student’s average by totaling the

values in one row, and dividing by number of homeworks

(the number of columns in the 2D array)

▪ We can calculate the class average on one homework by

totaling the values in one column, and dividing by the

number of students (the number of rows in the 2D array)

▪ We can calculate class average on all homework by

totaling all the data in the 2D array and dividing by the size

of the array (rows * columns)

CSCE 2004 - Programming Foundations I 56

2D ARRAYS

// Array declaration

const int STUDENTS = 40;

const int HOMEWORKS = 15;

float Grades[STUDENTS][HOMEWORKS];

// Array initialization

for (int r = 0; r < STUDENTS; r++)

for (int c = 0; c < HOMEWORKS; c++)

cin >> Grades[r][c];

CSCE 2004 - Programming Foundations I 57

Here we declare a

2D array for the

grades

Here we read student

scores from user to

initialize the 2D

arrray

2D ARRAYS

// Calculate homework average for one student

int student = 0;

float total = 0.0;

float average = 0.0;

cout << “Enter student index: ”;

cin >> student;

for (int c = 0; c < HOMEWORKS; c++)

total = total + Grades[student][c];

average = total / HOMEWORKS;

cout << “Average= ” << average << endl;

CSCE 2004 - Programming Foundations I 58

We loop over one row in

the 2D array to calculate

the homework average for

one student in class

2D ARRAYS

// Calculate class average for one homework

int homework = 0;

float total = 0.0;

float average = 0.0;

cout << “Enter homework index: ”;

cin >> homework;

for (int r = 0; r < STUDENTS; r++)

total = total + Grades[r][homework];

average = total / STUDENTS;

cout << “Average= ” << average << endl;

CSCE 2004 - Programming Foundations I 59

We loop over one column

in the 2D array to calculate

class average for one

homework assignment

2D ARRAYS

// Calculate class average on all homework

float total = 0.0;

float average = 0.0;

for (int r = 0; r < STUDENTS; r++)

for (int c = 0; c < HOMEWORKS; c++)

total = total + Grades[r][c];

average = total / (STUDENTS*HOMEWORKS);

cout << “Average= ” << average << endl;

CSCE 2004 - Programming Foundations I 60

We loop over whole array

to calculate class average

SOFTWARE

ENGINEERING TIPS

▪ Suggestions when using arrays:

▪ Always use constants for the array dimensions

▪ Make sure your loops go from 0..N-1

▪ Use functions to implement useful array operations

▪ Common programming errors:

▪ Invalid array declarations or initializations

▪ Array index out of bounds (off by one errors)

▪ Missing [] in array parameter definitions

▪ Attempting to modify a const array parameter

CSCE 2004 - Programming Foundations I 61

SUMMARY

▪ In this section, we described how cstrings (arrays of

characters) can be used to store and print text

▪ We also showed how 2D arrays can be defined and used

to manipulate two-dimensional data

CSCE 2004 - Programming Foundations I 62

ARRAYS

PART 3

SEARCHING AND SORTING

SEARCHING ARRAYS

▪ Once we have stored a collection of values in an array, we

can search the array to answer a number of questions:

▪ Does a specific value (like 7) occur in array?

▪ What is the maximum value in array?

▪ What is the minimum value in array?

CSCE 2004 - Programming Foundations I 64

2 6 5 3 5 8 9 7

maxmin

specific

value

SEARCHING ARRAYS

▪ Linear search is the most basic algorithm for searching

▪ Start at beginning of array (index 0)

▪ Look at each element of array one at a time

▪ Check if we have found what we are looking for

▪ Stop at end of the array (index N-1)

▪ This process is typically implemented with a loop

CSCE 2004 - Programming Foundations I 65

SEARCHING ARRAYS

// Linear searching for special value

float Special = 42;

for (int Pos = 0; Pos < SIZE; Pos++)

{

if (Value[Pos] == Special)

cout << "found value " << Special

<< " at position " << Pos << endl;

}

CSCE 2004 - Programming Foundations I 66

Loop over all

array locations

Check for desired

value in array

SEARCHING ARRAYS

// Linear searching for max and min values

float Minimum = Value[0];

float Maximum = Value[0];

for (int Pos = 1; Pos < SIZE; Pos++)

{

if (Value[Pos] < Minimum)

Minimum = Value[Pos];

if (Value[Pos] > Maximum)

Maximum = Value[Pos];

}

CSCE 2004 - Programming Foundations I 67

Loop over all

array locations

Initialize our best

guess of min/max

Update values of

min/max as needed

BINARY SEARCH

▪ What happens if we are given an array with sorted values?

▪ Now we know exactly where min/max should be

▪ Minimum value always at location 0

▪ Maximum value always at location N-1

CSCE 2004 - Programming Foundations I 68

2 3 5 5 6 7 8 9

maxmin

BINARY SEARCH

▪ The binary search algorithm can be used to search a

sorted array for a specific value

▪ Look at middle element of sorted array

▪ If equal to desired value, you found it

▪ If less than desired value, search right half of array

▪ If greater than desired value, search left half of array

▪ Repeat until data is found (or no data left to search)

CSCE 2004 - Programming Foundations I 69

BINARY SEARCH

▪ Search for value 7 in sorted array below

▪ Look at middle location (0+7)/2 = 3, which contains 5

▪ 5 < 7, so search to right

▪ This cuts size of array we are searching in half

CSCE 2004 - Programming Foundations I 70

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

BINARY SEARCH

▪ Search for value 7 in unsearched array below

▪ Look at middle location (4+7)/2 = 5, which contains 7

▪ We found the desired value in only 2 searching steps!

CSCE 2004 - Programming Foundations I 71

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

BINARY SEARCH

▪ Search for value 2 in sorted array below

▪ Look at middle location (0+7)/2 = 3, which contains 5

▪ 5 > 2, so search to left

▪ This cuts size of array we are searching in half

CSCE 2004 - Programming Foundations I 72

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

BINARY SEARCH

▪ Search for value 2 in unsearched array below

▪ Look at middle location (0+2)/2 = 1, which contains 3

▪ 3 > 2, so search to left

▪ Now there is only one location to search!

CSCE 2004 - Programming Foundations I 73

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

BINARY SEARCH

▪ Search for value 2 in unsearched array below

▪ Look at middle location (0+0)/2 = 0, which contains 2

▪ We found the desired value in only 3 searching steps!

CSCE 2004 - Programming Foundations I 74

2 3 5 5 6 7 8 9

2 3 5 5 6 7 8 9

BINARY SEARCH

▪ This divide and conquer approach is very fast since the

array we are searching is cut in half at each step

▪ Consider an array with 1024 sorted values

▪ Searching we go from 1024 → 512 → 256 → 128 → 64 →

32 → 16 → 8 → 4 → 2 → 1

▪ Only 10 steps needed to search array of 1024 elements

▪ In general, binary search takes log2N steps to search a

sorted array of N elements

▪ About 20 steps to search array of 1,000,000 elements

▪ About 30 steps to search array of 1,000,000,000 elements

CSCE 2004 - Programming Foundations I 75

BINARY SEARCH

▪ To implement binary search we need to:

▪ Keep track of the portion of the array we are searching

▪ Min = smallest array index of unsearched portion

▪ Max = largest array index of unsearched portion

▪ Mid = (Min + Max) / 2 is middle position

▪ We need to initialize Min=0 and Max=N-1

▪ We need to update these values as we search

▪ This can be implemented using iteration or using recursion

CSCE 2004 - Programming Foundations I 76

BINARY SEARCH

// Iterative binary search

int Search(int Desired, int Data[], int Min, int Max)

{

// Search array using divide and conquer approach

int Mid = (Min + Max) / 2;

while ((Data[Mid] != Desired) && (Max >= Min))

{

// Change min to search right half

if (Data[Mid] < Desired)

Min = Mid+1;

…

CSCE 2004 - Programming Foundations I 77

This loop will end

when data is found

or no locations are

left to search

We change lower array index

here to be 1 to right of midpoint

BINARY SEARCH

…

// Change max to search left half

else if (Data[Mid] > Desired)

Max = Mid-1;

// Update mid location

Mid = (Min + Max) / 2;

}

…

CSCE 2004 - Programming Foundations I 78

We change upper array index

here to be 1 to left of midpoint

BINARY SEARCH

…

// Return results of search

if (Data[Mid] == Desired)

return(Mid);

else

return(-1);

}

CSCE 2004 - Programming Foundations I 79

This returns the array

index of desired data

value or -1 if not found

BINARY SEARCH

// Recursive binary search

int Search(int Desired, int Data[], int Min, int Max)

{

// Terminating conditions

int Mid = (Min + Max) / 2;

if (Max < Min)

return(-1);

else if (Data[Mid] == Desired)

return(Mid);

…

CSCE 2004 - Programming Foundations I 80

This returns the array

index of desired data

value or -1 if not found

BINARY SEARCH

…

// Recursive call to search right half

else if (Data[Mid] < Desired)

return(Search(Desired, Data, Mid+1, Max));

// Recursive call to search left half

else if (Data[Mid] > Desired)

return(Search(Desired, Data, Min, Mid-1));

}

CSCE 2004 - Programming Foundations I 81

Notice how we

search a smaller

part of the array

with each recursive

function call

ARRAY SORTING

▪ The basic idea of array sorting is to move data values in

the array so they are in numerical or alphabetical order

▪ There are many applications that need sorted arrays

▪ Output array in ascending or descending order

▪ Search array more efficiently using binary search

▪ There are many algorithms for sorting arrays

▪ Some are easy to implement, others more complex

▪ Some have fast run times, others are slower

CSCE 2004 - Programming Foundations I 82

ARRAY SORTING

▪ One easy algorithm to implement is selection sort

▪ Divide the array into two parts: sorted and unsorted

▪ Find smallest value in the unsorted part of array

▪ Swap value into end of sorted part of array

▪ Repeat this process until the whole array is sorted

▪ Consider an array containing the first 8 digits of PI

▪ Lets see what happens if we use selection sort

▪ We show the array contents after each data swap

CSCE 2004 - Programming Foundations I 83

ARRAY SORTING

CSCE 2004 - Programming Foundations I 84

3 1 4 1 5 9 2 6

sorted - unsorted

1 3 4 1 5 9 2 6

sorted - unsorted

1 1 4 3 5 9 2 6

sorted - unsorted

1 1 2 3 5 9 4 6

sorted - unsorted

min

min

min

min

ARRAY SORTING

CSCE 2004 - Programming Foundations I 85

sorted - unsorted

sorted - unsorted

sorted - unsorted

sorted - unsorted

1 1 2 3 5 9 4 6

1 1 2 3 4 9 5 6

1 1 2 3 4 5 9 6

1 1 2 3 4 5 6 9

min

min

min

min

ARRAY SORTING

CSCE 2004 - Programming Foundations I 86

sorted - unsorted

1 1 2 3 4 5 6 9

▪ The array is sorted when the unsorted part is empty!

▪ In general, selection sort will take N "find minimum and

swap iterations" to sort an array of N elements

▪ Each "find minimum value" step looks at N data values, so

selection sort takes N2 operations

▪ The implementation of selection sort is shown below

ARRAY SORTING

// Initialize data to sort

const int SIZE = 10;

int Data[SIZE] = {3,1,4,1,5,9,2,6,5,3};

// Print unsorted data

for (int Index = 0; Index < SIZE; Index++)

cout << Index << " " << Data[Index] << endl;

CSCE 2004 - Programming Foundations I 87

ARRAY SORTING

// Perform selection sort algorithm

for (int Index = 0; Index < SIZE; Index++)

{

// Find smallest value in unsorted part

int SmallPos = Index;

for (int Pos = Index; Pos < SIZE; Pos++)

if (Data[Pos] < Data[SmallPos])

SmallPos = Pos;

…

CSCE 2004 - Programming Foundations I 88

This loop executes N

times moving the

sorted-unsorted line

This loop executes N

times to find the

smallest data value

Notice that we start this

loop at the beginning of

the unsorted part of array

ARRAY SORTING

…

// Swap smallest value into sorted part

int SmallVal = Data[SmallPos];

Data[SmallPos] = Data[Index];

Data[Index] = SmallVal;

}

// Print sorted data

for (int Index = 0; Index < SIZE; Index++)

cout << Index << " " << Data[Index] << endl;

CSCE 2004 - Programming Foundations I 89

CALCULATING

MEDIAN VALUE

▪ The median is defined to be midpoint of set of values

▪ Half of the data values are larger

▪ Half of the data values are smaller

▪ Algorithm for calculating the median value

▪ Sort data into numerical order

▪ Calculate midpoint = array_size / 2

▪ Median value = data[midpoint]

▪ Calculating the median is more work than finding the

average, but it is considered to be a more robust statistic

CSCE 2004 - Programming Foundations I 90

SUMMARY

▪ In this section, we described how linear search can be

used to find the min/max or special values in an array

▪ Then, we described how “binary search” can be used to

very quickly search for values in a sorted array

▪ Next, we introduced the “selection sort” algorithm and

showed how it can be used to sort data

▪ Finally, we saw how a sorted array can be used to

calculate the median value

CSCE 2004 - Programming Foundations I 91

	Slide 1: ARRAYS
	Slide 2: OVERVIEW
	Slide 3: overview
	Slide 4: overview
	Slide 5: OVERVIEW
	Slide 6: ARRAYS
	Slide 7: Declaring arrays
	Slide 8: Declaring arrays
	Slide 9: Declaring arrays
	Slide 10: Declaring arrays
	Slide 11: Declaring arrays
	Slide 12: Declaring arrays
	Slide 13: Array Access
	Slide 14: Array access
	Slide 15: Array access
	Slide 16: Array initialization
	Slide 17: Array initialization
	Slide 18: Array initialization
	Slide 19: Arrays and loops
	Slide 20: Arrays and loops
	Slide 21: Arrays and loops
	Slide 22: Using partial arrays
	Slide 23: Using partial arrays
	Slide 24: Using partial arrays
	Slide 25: Using partial arrays
	Slide 26: Using partial arrays
	Slide 27: Using partial arrays
	Slide 28: Using partial arrays
	Slide 29: Arrays as parameters
	Slide 30: Arrays as parameters
	Slide 31: Arrays as parameters
	Slide 32: Arrays as parameters
	Slide 33: Arrays as parameters
	Slide 34: Arrays as parameters
	Slide 35: Arrays as parameters
	Slide 36: Arrays as parameters
	Slide 37: Arrays as parameters
	Slide 38: Arrays as parameters
	Slide 39: summary
	Slide 40: ARRAYS
	Slide 41: Character arrays
	Slide 42: Character arrays
	Slide 43: Character arrays
	Slide 44: Character arrays
	Slide 45: Character arrays
	Slide 46: Character arrays
	Slide 47: Character arrays
	Slide 48: 2d arrays
	Slide 49: 2d arrays
	Slide 50: 2d arrays
	Slide 51: 2d arrays
	Slide 52: 2d arrays
	Slide 53: 2D Arrays
	Slide 54: 2d arrays
	Slide 55: 2d arrays
	Slide 56: 2D arrays
	Slide 57: 2d arrays
	Slide 58: 2d arrays
	Slide 59: 2d arrays
	Slide 60: 2d arrays
	Slide 61: Software engineering tips
	Slide 62: summary
	Slide 63: ARRAYS
	Slide 64: Searching arrays
	Slide 65: Searching arrays
	Slide 66: Searching arrays
	Slide 67: Searching arrays
	Slide 68: BINARY SEARCH
	Slide 69: Binary search
	Slide 70: BINARY SEARCH
	Slide 71: BINARY SEARCH
	Slide 72: BINARY SEARCH
	Slide 73: BINARY SEARCH
	Slide 74: BINARY SEARCH
	Slide 75: Binary search
	Slide 76: Binary search
	Slide 77: Binary search
	Slide 78: Binary search
	Slide 79: Binary search
	Slide 80: Binary search
	Slide 81: Binary search
	Slide 82: Array sorting
	Slide 83: Array sorting
	Slide 84: Array sorting
	Slide 85: Array sorting
	Slide 86: Array sorting
	Slide 87: Array sorting
	Slide 88: Array sorting
	Slide 89: Array sorting
	Slide 90: Calculating median value
	Slide 91: summary

