
CLASSES

OVERVIEW

OVERVIEW

▪ In this section, we will see how to define, implement and

use classes in object oriented programs

▪ What is a class?

▪ A class is a user defined data type that contain variables

(called attributes) and a collection of operations on these

variables (called methods)

▪ The primary advantage of classes is that they give us a

natural way to create robust and reliable code that can be

reused in a wide range of applications

CSCE 2004 - Programming Foundations I 2

OVERVIEW

▪ A class is normally created by one programmer and used

by many other programmers

▪ Only the creator needs to know implementation details

▪ Users can ignore details and build code on top of the class

▪ This allows teams of programmers to work on separate

classes to build very large and complex applications

▪ Class libraries

▪ The standard C++ class library contains dozens of general

purpose classes that can be used in any program

▪ We have already been using the string, cin, cout, ifstream,

and ofstream classes in our programs

CSCE 2004 - Programming Foundations I 3

OVERVIEW

▪ To define a class,

▪ List the data fields inside the class

▪ List the functions/methods that operate on this data

▪ To implement a class

▪ Implement constructor functions to initialize data fields

▪ Implement methods to perform data operations

▪ To use a class

▪ Declare objects of the class

▪ Call methods on these objects

CSCE 2004 - Programming Foundations I 4

OVERVIEW

▪ Lesson objectives:

▪ Learn how to create and use simple classes

▪ Learn how to create and use composite classes

▪ Study example programs with classes

▪ Complete online labs on classes

▪ Complete programming project using classes

CSCE 2004 - Programming Foundations I 5

CLASSES

PART 1

DEFINING CLASSES

DEFINING CLASSES

▪ The main purpose of a class is to bundle together the data

and operations that make up an abstract data type

▪ We must give variable declarations for all of the data fields

that make up the abstract data type

▪ We must give function prototypes for all of the methods

that operate on these data fields

▪ We must also specify how the class can be used

▪ We must specify which of the variables and functions are

public and can be accessed directly by users of this class

▪ We must also specify which of the variables and functions

are private and hidden from users of this class

CSCE 2004 - Programming Foundations I 7

DEFINING CLASSES

▪ Overview of the C++ "class” definition syntax

class class_name

{

private:

data_type variable_name;

data_type variable_name;

…

CSCE 2004 - Programming Foundations I 8

We give the name of the class here

DEFINING CLASSES

▪ Overview of the C++ "class” syntax

class class_name

{

private:

data_type variable_name;

data_type variable_name;

…

CSCE 2004 - Programming Foundations I 9

Everything after the word “private”

is hidden from users of the class

DEFINING CLASSES

▪ Overview of the C++ "class” syntax

class class_name

{

private:

data_type variable_name;

data_type variable_name;

…

CSCE 2004 - Programming Foundations I 10

These variable declarations define

the data fields inside the class that

make up the abstract data type

DEFINING CLASSES

…

public:

class_name();

~class_name();

return_type method_name(parameter_list);

return_type method_name(parameter_list);

return_type method_name(parameter_list);

};

CSCE 2004 - Programming Foundations I 11

Everything after the word “public”

is visible to users of the class

DEFINING CLASSES

…

public:

class_name();

~class_name();

return_type method_name(parameter_list);

return_type method_name(parameter_list);

return_type method_name(parameter_list);

};

CSCE 2004 - Programming Foundations I 12

The constructor function has

the same name as the class, it

is used to initialize data fields

DEFINING CLASSES

…

public:

class_name();

~class_name();

return_type method_name(parameter_list);

return_type method_name(parameter_list);

return_type method_name(parameter_list);

};

CSCE 2004 - Programming Foundations I 13

The destructor function has the

same name as the class with a

tilda character in front, it is used

to finalize data fields

DEFINING CLASSES

…

public:

class_name();

~class_name();

return_type method_name(parameter_list);

return_type method_name(parameter_list);

return_type method_name(parameter_list);

};

CSCE 2004 - Programming Foundations I 14

These function prototypes specify

the methods that implement

operations on the data fields

DEFINING CLASSES

…

public:

class_name();

~class_name();

return_type method_name(parameter_list);

return_type method_name(parameter_list);

return_type method_name(parameter_list);

};

CSCE 2004 - Programming Foundations I 15

We need to put a semicolon

here after the curly bracket

DEFINING CLASSES

▪ Consider the problem of keeping track of the time of day

in a program

▪ We need an integer hour value [0..23]

▪ We need an integer minute value [0..59]

▪ We need an integer second value [0..59]

▪ We need to operations that safely manipulate the hour,

minute, second values

▪ Provide functions to access/modify time values

▪ Provide functions to input/output time values

▪ Make sure the user can not create invalid times

CSCE 2004 - Programming Foundations I 16

DEFINING CLASSES

▪ Let us consider the problem of creating a Time class

▪ We declare variables for all of the data fields in the
"private" section of the Time class

▪ Use integers for hour, minute, second values

▪ We give function headers for the constructor/destructor
and all methods in the "public" section of the Time class

▪ Use “Get” method to access data fields

▪ Use “Set” method to modify data fields

▪ Use “Read” method to input time data fields

▪ Use “Print” method to output time data fields

CSCE 2004 - Programming Foundations I 17

DEFINING CLASSES

class Time

{

private:

int hour;

int minute;

int second;

…

CSCE 2004 - Programming Foundations I 18

These variable declarations define

the data fields inside the Time class

DEFINING CLASSES

…

public:

Time();

~Time();

void Set(const int Hr, const int Min, const int Sec);

void Get(int &Hr, int &Min, int &Sec) const;

void Read();

void Print() const;

};

CSCE 2004 - Programming Foundations I 19

The constructor / destructor

functions for the Time class

DEFINING CLASSES

…

public:

Time();

~Time();

void Set(const int Hr, const int Min, const int Sec);

void Get(int &Hr, int &Min, int &Sec) const;

void Read();

void Print() const;

};

CSCE 2004 - Programming Foundations I 20

These class methods define

operations on Time data fields

DEFINING CLASSES

▪ The “Set” method has three value parameters that allow

the user to specify the three Time data fields

void Set(const int Hr, const int Min, const int Sec);

▪ The “Get” method has three reference parameters that

allow the user to see the values of the Time data fields

void Get(int &Hr, int &Min, int &Sec) const;

CSCE 2004 - Programming Foundations I 21

DEFINING CLASSES

▪ The “Read” method has no parameters because the

function will prompt the user to enter Time data

void Read();

▪ The “Print” method has no parameters because the

function simply prints the Time data

void Print() const;

CSCE 2004 - Programming Foundations I 22

DEFINING CLASSES

▪ We have yet another use of "const" in the method headers

void Get(int &Hr, int &Min, int &Sec) const;

void Print() const;

▪ The "const" tells the compiler that these methods do NOT
change any of the variables in the object

▪ These are called accessor methods

▪ Methods without the "const" ARE allowed to change any
of the variables in the object

▪ These are called mutator methods

CSCE 2004 - Programming Foundations I 23

DEFINING CLASSES

▪ It is possible to extend the Time class in many ways…

▪ Add more data fields (eg. days, microseconds)

▪ Add more methods to manipulate Time values

▪ A function to print time in military time

▪ A function to compare two time values

▪ A function to add H hours, M minutes, S seconds

▪ A function to subtract H hours, M minutes, S seconds

CSCE 2004 - Programming Foundations I 24

DEFINING CLASSES

▪ Where do we put the Time class definition?

▪ By convention, the definition of a class is stored in a

“header file” with the same name as the class

▪ For example, the Time class would be stored in “time.h”

▪ How can we use the Time class in our program?

▪ We must add #include “time.h” at the top of our main

program to define the Time class in our program

▪ By convention, the implementation of the Time class is

stored in “time.cpp”

▪ We compile the Time class and our main program using:

g++ -Wall time.cpp main.cpp

CSCE 2004 - Programming Foundations I 25

DEFINING CLASSES

▪ To include a user defined class we use quotes " "

#include "time.h"

▪ To include predefined C++ class we use < >

#include <cmath>

#include <cstdlib>

#include <iostream>

#include <fstream>

CSCE 2004 - Programming Foundations I 26

The compiler will look in your

current directory for this file

The compiler will look in the C++

class library folder for these files

SUMMARY

▪ A class is used to bundle together the data and operations

that make up an abstract data type

▪ Data fields are stored in class variables (attributes)

▪ Operations on this data are defined by methods

▪ The class definition also tells us how to use a class

▪ The "public section" lists variables and methods that can

be accessed by users of the class

▪ The "private section" lists variables and methods that are

hidden from users of the class

CSCE 2004 - Programming Foundations I 27

CLASSES

PART 2

IMPLEMENTING AND

USING CLASSES

IMPLEMENTING

CLASSES

▪ Lets see how classes are implemented

▪ Methods are implemented just like regular functions

▪ We must add “class name::” before the method name

▪ This tells the C++ compiler that this method has access to

the private variables of the class

return_type class_name::method_name(parameter_list)

{

// Code for method goes here

}

CSCE 2004 - Programming Foundations I 29

IMPLEMENTING

CLASSES

▪ Easy way to start is to create "skeleton methods"

▪ Copy and paste the method headers from class definition

▪ Remove the semicolon at the end of each header

▪ Add “class_name::” before the method_name

▪ Add a debugging statement to print the method name

return_type class_name::method_name(parameter_list)

{

cout << "method_name\n";

}

CSCE 2004 - Programming Foundations I 30

IMPLEMENTING

CLASSES

▪ Now lets implement the Time class

▪ First, we create a file called “time.cpp” to contain the Time

class implementation

▪ At the top of time.cpp we must add #include “time.h” to

define the Time class

▪ Next, we implement of all Time methods in “time.cpp” in

the same order as they appear in “time.h”

▪ It is always a good idea to start with skeleton methods to

debug the parameter passing and returns types

CSCE 2004 - Programming Foundations I 31

IMPLEMENTING

CLASSES

#include “time.h”

Time::Time()

{

cout << "Constructor\n";

}

Time::~Time()

{

cout << "Destructor\n";

}

CSCE 2004 - Programming Foundations I 32

The constructor and destructor

methods are unique and do

NOT have any return types

(not even void)

IMPLEMENTING

CLASSES

void Time::Set(const int Hr, const int Min, const int Sec)

{

cout << "Set\n";

}

void Time::Get(int &Hr, int &Min, int &Sec) const

{

cout << "Get\n";

}

CSCE 2004 - Programming Foundations I 33

IMPLEMENTING

CLASSES

void Time::Read()

{

cout << ”Read\n";

}

void Time::Print() const

{

cout << "Print\n";

}

CSCE 2004 - Programming Foundations I 34

IMPLEMENTING

CLASSES

▪ How do we compile the Time class?

▪ We use “g++ -Wall -c time.cpp” to check the syntax of

time.cpp and create an intermediate output file “time.o”

▪ After we have the "skeleton methods" compiling

▪ Add the desired code for each method one at a time

▪ Compile and debug each method one at a time

▪ This is a classic "incremental development" technique

▪ We always have a compiling / running program !!!

CSCE 2004 - Programming Foundations I 35

IMPLEMENTING

CLASSES

// Time constructor method

Time::Time()

{

cout << "Constructor\n";

hour = 0;

minute = 0;

second = 0;

}

CSCE 2004 - Programming Foundations I 36

Give all of the private

variables some initial values

IMPLEMENTING

CLASSES

// Time destructor method

Time::~Time()

{

cout << "Destructor\n";

hour = 0;

minute = 0;

second = 0;

}

CSCE 2004 - Programming Foundations I 37

We don’t really have to do

this but it doesn’t hurt to

clear the memory of old data

IMPLEMENTING

CLASSES

// Time Set method

void Time::Set(const int Hr, const int Min, const int Sec)

{

cout << "Set\n";

hour = Hr;

minute = Min;

second = Sec;

}

CSCE 2004 - Programming Foundations I 38

Later, we should add some

error checking to make sure

the input Time is valid

IMPLEMENTING

CLASSES

// Time Get method

void Time::Get(int &Hr, int &Min, int &Sec) const

{

cout << "Get\n";

Hr = hour;

Min = minute;

Sec = second;

}

CSCE 2004 - Programming Foundations I 39

We fill in multiple reference

parameters to give data back

to the main program

IMPLEMENTING

CLASSES

// Time Read method

void Time::Read()

{

cout << "Enter hour: ";

cin >> hour;

cout << "Enter minute: ";

cin >> minute;

cout << "Enter second: ”;

cin >> second;

}

CSCE 2004 - Programming Foundations I 40

Later, we should add some

error checking to make sure

the input Time is valid

IMPLEMENTING

CLASSES

// Time Print method

void Time::Print() const

{

if (hour < 10) cout << "0";

cout << hour << ":";

if (minute < 10) cout << "0";

cout << minute << ":";

if (second < 10) cout << "0";

cout << second << endl;

}

CSCE 2004 - Programming Foundations I 41

This will print Time values in

the 00:00:00 format

IMPLEMENTING

CLASSES

▪ How should we test that a Time value is valid?

▪ We need to check that the hour, minute, second values are

within their expected 0..23, 0..59, 0..59 ranges

▪ How should we correct invalid Time values?

▪ Simple solution uses modulo arithmetic to “throw away”

any overflow or underflow that occurs

(10:66:90 becomes 10:06:30)

▪ Fancy solution “wraps around” the hour, minute, second

values if they overflow or underflow

(10:66:90 becomes 11:07:30)

CSCE 2004 - Programming Foundations I 42

IMPLEMENTING

CLASSES

// Simple time validation

hour = hour % 24;

minute = minute % 60;

second = second % 60;

CSCE 2004 - Programming Foundations I 43

This method will “throw

away” any value overflow

It will not change valid hour,

minute, second values

IMPLEMENTING

CLASSES

// Fancy time validation

minute = minute + second / 60;

second = second % 60;

hour = hour + minute / 60;

minute = minute % 60;

hour = hour % 24;

CSCE 2004 - Programming Foundations I 44

This method will “wrap

around” any value overflow

It will not change valid hour,

minute, second values

USING CLASSES

▪ Using classes is a three step process

1) Include the class definition at top of program

#include <class_name> for built in classes

#include “class_name.h” for user defined classes

2) Declare objects of the class like we declare variables

class_name object_name;

3) Use object by calling methods using the “dot notation”

object_name.method_name();

object_name.method_name(param1, param2);

CSCE 2004 - Programming Foundations I 45

USING CLASSES

▪ The compiler will look at the class definition to check that

we are using a class properly

▪ The compiler WILL allow us to call public class methods in

the class using the dot notation

object_name.method_name(param1, param2);

▪ The compiler will NOT allow us to access the private data

fields in the class using the dot notation

object_name.variable_name = 42;

CSCE 2004 - Programming Foundations I 46

This will cause a

compiler error

USING CLASSES

▪ We have actually been using classes for some time

because string is a built in class on most systems

#include <string>

string name;

name = “george”;

name[0] = ‘G’;

int len = name.length();

CSCE 2004 - Programming Foundations I 47

This lets us use strings

This creates a string object

We use the string object by

calling methods in string class

using the “dot notation”

USING CLASSES

▪ We have also been using classes for file input/output

because ifstream and ofstream are also built in classes

#include <fstream>

ifstream din;

din.open("junk.txt");

din >> value;

din.close();

CSCE 2004 - Programming Foundations I 48

This lets us use file streams

This creates an ifstream object

We use the ifstream object by

calling methods in ifstream class

using the “dot notation”

USING CLASSES

▪ Now lets see how we can use the Time class using the

three step process described above

1) Include the Time class

#include “time.h”

2) Declare Time objects

Time Now;

3) Use Time methods on objects

Now.Print();

CSCE 2004 - Programming Foundations I 49

USING CLASSES

#include “time.h”

// Simple program using the Time class

int main()

{

int Hr, Min, Sec;

Time Now, Then;

Now.Print();

Then.Print();

CSCE 2004 - Programming Foundations I 50

Declaring two Time objects

to store time information

This lets us use the Time

class in this program

This prints out the default

values of the Time objects

USING CLASSES

Now.Set(10, 30, 0);

Now.Print();

Then = Now;

Then.Print();

CSCE 2004 - Programming Foundations I 51

This will set the fields

in the Now object and

then print 10:30:00

This will copy all time data

from Now object into Then

object and print 10:30:00

USING CLASSES

Now.Get(Hr, Min, Sec);

cout << Hr << " "

<< Min << " "

<< Sec << endl;

Now.minute = 42;

cout << Then.hour;

}

CSCE 2004 - Programming Foundations I 52

This will extract info

from the Now object

and print 10 30 0

This code will NOT

compile because

these data fields are

private variables of

the Time class

USING CLASSES

▪ How should we compile and run this program?

▪ Assume time.h contains the class definition

▪ Assume time.cpp contains the class implementation

▪ Assume main.cpp contains the program

▪ Use “g++ -o main.exe time.cpp main.cpp” to compile both

of the C++ files and create main.exe

CSCE 2004 - Programming Foundations I 53

SUMMARY

▪ In this section, we saw how to implement and use classes

in sample programs

▪ Define class in “class.h”

▪ Implement class methods in “class.cpp”

▪ Implement main program in “main.cpp”

▪ This separation means that users of a class only need to

look at the class definition, and not the implementation

▪ For example, you have been using cin/cout/strings without

looking at their implementations

▪ This is one of the main advantages of data abstraction and

object oriented programming

CSCE 2004 - Programming Foundations I 54

CLASSES

PART 3

SIMPLE CLASS EXAMPLES

SIMPLE CLASS

EXAMPLES

▪ The goal of object oriented programming is to create

applications that build upon a collection of a classes

▪ There are three steps to this process:

▪ Decide what information is needed to describe object

▪ What private variables to declare

▪ Decide what operations on the object are necessary

▪ What public methods to create

▪ Build one or more applications using class

▪ How to create and use objects in a program

CSCE 2004 - Programming Foundations I 56

SIMPLE CLASS

EXAMPLES

▪ In this section, we will illustrate object oriented

programming by creating two simple classes:

▪ Student class

▪ Stores basic information about a student

▪ Very basic operations to access information

▪ Could be used as part of large university database

▪ Linear class

▪ Store information about linear equations

▪ Classic mathematical operations for linear equations

▪ Could be used in an engineering application

CSCE 2004 - Programming Foundations I 57

STUDENT CLASS

▪ What student information might be of interest?

▪ Student ID number (int)

▪ First name, middle name, last name (string)

▪ Home address, campus address (string)

▪ ACT, SAT test scores (int)

▪ Undergraduate major (string)

▪ Current GPA (float)

▪ We store information in private variables in the class

CSCE 2004 - Programming Foundations I 58

STUDENT CLASS

▪ What operations could we perform on a student?

▪ Change address

▪ Update test scores

▪ Change major

▪ Update GPA

▪ Print all information

▪ We use get and set methods to implement operations

CSCE 2004 - Programming Foundations I 59

STUDENT CLASS

class Student

{

private:

int ID;

string Name;

string Address;

float GPA;

public:

Student();

~Student();

CSCE 2004 - Programming Foundations I 60

We are using four private

variables here but more

data fields could be added

Standard constructor and

destructor methods

STUDENT CLASS

…

int getID() const;

string getName() const;

string getAddress() const;

float getGPA() const;

void setID(const int id);

void setName(const string name);

void setAddress(const string address);

void setGPA(const float gpa);

void print() const;

};

CSCE 2004 - Programming Foundations I 61

One get method for each

private variable

One set method for each

private variable

STUDENT CLASS

Student::Student()

{

// Initialize private variables

ID = 0;

Name = "none";

Address = "none";

GPA = 0.0;

}

Student::~Student()

{

// Empty

}

CSCE 2004 - Programming Foundations I 62

Constructor

implementation

Destructor

implementation

STUDENT CLASS

int Student::getID() const { return ID; }

string Student::getName() const { return Name; }

string Student::getAddress() const { return Address; }

float Student::getGPA() const { return GPA; }

void Student::setID(const int id) { ID = id; }

void Student::setName(const string name) { Name = name; }

void Student::setAddress(const string address) { Address = address; }

void Student::setGPA(const float gpa) { GPA = gpa; }

CSCE 2004 - Programming Foundations I 63

One line get set

methods can be

used to save space

in the program

STUDENT CLASS

void Student::print()

{

cout << "ID: " << ID << endl

<< "Name: " << Name << endl

<< "Address: " << Address << endl

<< "GPA: " << GPA<< endl;

}

CSCE 2004 - Programming Foundations I 64

The format of the output

may depend on the needs

of the application

STUDENT CLASS

int main()

{

cout << "Testing the Student class\n";

Student student;

student.setID(123456);

student.setName("John Gauch");

student.setAddress("518 JB Hunt");

student.setGPA(3.14);

student.print();

}

CSCE 2004 - Programming Foundations I 65

We can test the Student

class by calling each of

the methods

LINEAR CLASS

▪ How can we represent a linear equation?

▪ Slope intercept formula: y = mx + b

▪ Store m, b values

▪ Geometric formula: (nx,ny)
. (x,y) = d

▪ Store normal (nx,ny) and distance from origin d

▪ Parametric formula: (x1,y1) + t (x2-x1,y2-y1)

▪ Store points on line (x1,y1) and (x2,y2)

▪ Classic formula: ax + by + c = 0

▪ Store a, b, c values

▪ We only have to store the linear equation in one way, and

we can convert to any of the other representations

CSCE 2004 - Programming Foundations I 66

LINEAR CLASS

▪ What operations could we perform on a linear equation?

▪ Get and set the line equation coefficients

▪ Print the line in y=mx+b or ax+by+c=0 format

▪ Check if line is vertical or horizontal

▪ Check if two lines are parallel or perpendicular

▪ Solve for x when given y

▪ Solve for y when given x

▪ Calculate the intersection point of two lines

▪ Calculate distance from a point to the line

▪ Users of this class do not need to know how these
operations are implemented – just how to call them

CSCE 2004 - Programming Foundations I 67

LINEAR CLASS

class Linear

{

private:

float A, B, C;

public:

Linear();

~Linear();

void SetCoefficients(const float a, const float b, const float c);

void GetCoefficients(float &a, float &b, float &c) const;

void PrintABC() const;

void PrintMB() const;

CSCE 2004 - Programming Foundations I 68

We are using the

Ax + By + C = 0

line representation

We are using methods to

get/set all three line

coefficients at one time

LINEAR CLASS

…

bool Vertical() const;

bool Horizontal() const;

bool Parallel(Linear eq) const;

bool Perpendicular(Linear eq) const;

bool SolveX(float &x, const float y) const;

bool SolveY(const float x, float &y) const;

bool Intersect(Linear eq, float &x, float &y) const;

bool Distance(float x, float y, float &dist) const;

};

CSCE 2004 - Programming Foundations I 69

Return true/false answer

to line property question

Return true/false error

checking status flag

Calculation results are stored

in reference parameters

LINEAR CLASS

void Linear::SetCoefficients(const float a, const float b, const float c)

{

A = a;

B = b;

C = c;

}

void Linear::GetCoefficients(float &a, float &b, float &c) const

{

a = A;

b = B;

c = C;

}

CSCE 2004 - Programming Foundations I 70

LINEAR CLASS

void Linear::PrintABC() const

{

cout << A << "x + " << B << "y + " << C << " = 0\n";

}

void Linear::PrintMB() const

{

if (B != 0)

cout << "y = " << -A/B << "x + " << -C/B << endl;

else if (A != 0)

cout << "x = " << -C/A << endl;

else

cout << C << " = 0\n";

}

CSCE 2004 - Programming Foundations I 71

LINEAR CLASS

bool Linear::Horizontal() const { return (A == 0.0); }

bool Linear::Vertical() const { return (B == 0.0); }

bool Linear::Parallel(Linear eq) const

{ // check that slope of one line (-A/B) equals slope of the other line (-eq.A/eq.B)

// to avoid potential divide by zero we multiply equation by both denominators

return (A * eq.B == B * eq.A);

}

bool Linear::Perpendicular(Linear eq) const

{ // check that slope of one line (-A/B) is equal to the

// negative inverse slope of the other line (eq.B/eq.A)

// to avoid potential divide by zero we multiply equation by both denominators

return (- A * eq.A == B * eq.B);

}
CSCE 2004 - Programming Foundations I 72

LINEAR CLASS

bool Linear::SolveX(float &x, const float y) const

{

if (Horizontal())

return false;

x = -(B * y + C) / A;

return true;

}

bool Linear::SolveY(const float x, float &y) const

{

if (Vertical())

return false;

y = -(A * x + C) / B;

return true;

}

CSCE 2004 - Programming Foundations I 73

We perform error checking

before solving for x or y, and

return a true/false error status

LINEAR CLASS

bool Linear::Intersect(Linear eq, float &x, float &y) const

{

// Error checking

if (Parallel(eq))

return false;

// Solve for x and y

x = (B * eq.C - C * eq.B) / (A * eq.B - B * eq.A);

y = (A * eq.C - C * eq.A) / (B * eq.A - A * eq.B);

return true;

}

CSCE 2004 - Programming Foundations I 74

Our error checking will avoid

potential divide-by-zero errors

in this calculation

LINEAR CLASS

bool Linear::Distance(float x, float y, float &dist) const

{

// Error checking

if ((A == 0) && (B == 0))

return false;

// Calculate distance from line

dist = fabs(A * x + B * y + C) / sqrt(A * A + B * B);

return true;

}

CSCE 2004 - Programming Foundations I 75

Our error checking will avoid

potential divide-by-zero errors

in this calculation

LINEAR CLASS

int main()

{

cout << "Testing the Linear class\n";

float a,b,c, x, y, dist;

cout << "Enter line coefficients: ";

cin >> a >> b >> c;

// Create a linear equation

Linear eq1;

eq1.SetCoefficients(a, b, c);

eq1.PrintABC();

eq1.PrintMB();

CSCE 2004 - Programming Foundations I 76

LINEAR CLASS

// Test some basic line properties

cout << "Vertical test: " << eq1.Vertical() << endl;

cout << "Horizontal test: " << eq1.Horizontal() << endl;

// Test some basic line calculations

if (eq1.SolveX(x, 1))

cout << "SolveX(1): " << x << endl;

if (eq1.SolveY(1, y))

cout << "SolveY(1): " << y << endl;

if (eq1.Distance(0, 0, dist))

cout << "Distance(0,0): " << dist << endl;

CSCE 2004 - Programming Foundations I 77

We only print results if the

calculation was successful

LINEAR CLASS

// Create a second linear equation

cout << "Enter line coefficients: ";

cin >> a >> b >> c;

Linear eq2;

eq2.SetCoefficients(a, b, c);

// Test advanced line methods

cout << "Parallel test: " << eq1.Parallel(eq2) << endl;

cout << "Perpendicular test: " << eq1.Perpendicular(eq2) << endl;

if (eq1.Intersect(eq2, x, y))

cout << "Intersection point: " << x << " " << y << endl;

}

CSCE 2004 - Programming Foundations I 78

When we print a boolean

0 will be printed if false

1 will be printed if true

SUMMARY

▪ In this section, we showed how two simple classes could

be defined, implemented, and used in a program

▪ The Student class illustrated how separate get/set

methods could be used for each private variable

▪ The Student class methods do not have any error

checking, but this could be added (eg. GPA < 4.0)

▪ The Linear class uses get/set methods with multiple

parameters to access/store private variables

▪ The Linear class illustrated how true/false status flags can

be used to return error checking results

CSCE 2004 - Programming Foundations I 79

CLASSES

PART 4

ADVANCED CLASSES

ADVANCED CLASSES

▪ Assignment of objects

▪ Assume Now and Then are objects of the same class

▪ We CAN use "Now = Then;" to assign an object

▪ The program will make a field-by-field copy of object

▪ Comparison of two objects

▪ We can NOT use "if (Now == Then)" to compare objects

▪ Instead we must compare two objects on a field-by-field

basis inside a comparison method to see if they are equal

▪ Eg: "if (Now.IsEqual(Then))"

CSCE 2004 - Programming Foundations I 81

ADVANCED CLASSES

▪ Printing an object

▪ We can NOT just print using "cout << Now;"

▪ Instead we call a method in the class

▪ Eg: Now.Print();

▪ Initialization of an object

▪ We can give initial values when declaring an object

▪ We must create a constructor method with parameters

▪ Eg: Time Later(12, 34, 56);

▪ Same as Time Later; Later.set(12,34,56);

CSCE 2004 - Programming Foundations I 82

ADVANCED CLASSES

▪ Objects as parameters

▪ Objects can used as value parameters or reference

parameters in functions

▪ Using reference parameters is slightly faster because the

data does not need to be copied

▪ Objects as return values

▪ An object can also be used as a return type for a function

▪ This gives us a way to return more than one value at one

time from the function

CSCE 2004 - Programming Foundations I 83

ADVANCED CLASSES

▪ We are allowed to make methods in a class private

▪ Put the method prototype under "private"

▪ Private methods can be called by other methods in the

class, but not by users of this class in the main program

▪ This is useful for basic operations we need to implement

the class, but the user should never need to use

▪ We could have a "CheckValid" method in the Time class to

make sure the hour, minute, second represent a valid time

CSCE 2004 - Programming Foundations I 84

ADVANCED CLASSES

▪ We are also allowed to make variables in a class public

▪ Put the variable declaration under "public"

▪ Public variables can be read and modified by users of the

class in the main program

▪ Doing this will "break" the data hiding principal in object

oriented programming

▪ Some programmers will do this on purpose to avoid the

computational overhead of get/set methods

CSCE 2004 - Programming Foundations I 85

ADVANCED CLASSES

▪ Arrays of objects

▪ An array of objects can be used to store data

▪ "student_class student[5]" creates an array of objects to

store all student information (name, address, major, gpa)

CSCE 2004 - Programming Foundations I 86

student[2]

object

student[2].setName(“bob”);

To set private variable

student

array

ADVANCED CLASSES

▪ Nested classes

▪ A class can contain other classes as variables

▪ By nesting classes we can build more complex ADTs

▪ For example, we can store track and field race results

using a class that contains two other classes

CSCE 2004 - Programming Foundations I 87

Person class keeps track of

(name, address, age, gender)

Time class keeps track of

(hour, minute seconds)

Result class keeps track of all

track and field race results

DEFAULT

CONSTRUCTOR

▪ The default constructor is the method that is automatically

called when you define objects using a class

▪ The default constructor normally has no parameters and

sets all data fields in the class to some initial value

class_name();

▪ We create object of this class using the following:

class_name object;

CSCE 2004 - Programming Foundations I 88

DEFAULT

CONSTRUCTOR

▪ The default constructor can also have one or more

parameters with pre-defined initial values

class_name(float param1=0, int param2=0);

▪ You can create objects using any of the following:

class_name object1; // param1=0, param2=0

class_name object2(42); // param1=42, param2=0

class_name object3(42, 17); // param1=42, param2=17

▪ Notice that the values provided above fill in parameters from

left to right in the parameter list

CSCE 2004 - Programming Foundations I 89

DEFAULT

CONSTRUCTOR

▪ The implementation of a default constructor uses the input

parameters to initialize the private fields

class_name::class_name(float param1, int param2)

{

field1 = param1;

field2 = param2;

…

}

CSCE 2004 - Programming Foundations I 90

We initialize the data fields using

parameter values provided by the

user or the default values

You do not need to repeat the

default parameter values here

COPY CONSTRUCTOR

▪ The copy constructor is a special method that creates a

new object by making a copy of another object

▪ This method is automatically called by the program when

we pass an object by value into a function

▪ The copy constructor must have one object passed in as a

const reference parameter

class_name(const class_name & object);

CSCE 2004 - Programming Foundations I 91

If we leave this

off then we don’t

have a copy

constructor

COPY CONSTRUCTOR

▪ The implementation of a copy constructor simply copies

the fields from the input object into the private fields

class_name::class_name(const class_name & object)

{

field1 = object.field1;

field2 = object.field2;

field3 = object.field3;

…

}

CSCE 2004 - Programming Foundations I 92

We are allowed to access the data

fields of object because we are

inside one of the class methods

COPY CONSTRUCTOR

▪ The copy constructor can also be used to create objects

class_name object1; // creates object1

object1.set(72.5, 49); // stores 72.5 and 49 in object1

class_name object2(object1); // object2 is a copy of object1

▪ This can also be done using object assignment

class_name object1; // creates object1

object1.set(72.5, 49); // stores 72.5 and 49 in object1

class_name object2; // creates object2

object2 = object1; // copies object1 into object2

CSCE 2004 - Programming Foundations I 93

COPY CONSTRUCTOR

• Copy constructor is automatically called when passing an

object by value into a function

• Add example here

CSCE 2004 - Programming Foundations I 94

STATIC CONSTANTS

▪ The keyword "static" can also be used in a class definition

to create "static constants"

▪ Only one memory location is allocated for this static

constant which is shared by all of the objects in the class

▪ Most static constants are private but some are public

▪ Static constants can be used to:

▪ Specify the size of a private array

▪ Specify the min/max values on private variables

▪ Specify boolean flags for debugging or printing

▪ Specify mathematical constants

CSCE 2004 - Programming Foundations I 95

STATIC CONSTANTS

// Store information about a popular TV family

class family

{

public:

…

private:

static const int NUM_CHILDREN = 19;

string mother, father;

string children[NUM_CHILDREN];

…

};

CSCE 2004 - Programming Foundations I 96

This constant is used inside the

class to control loops reading or

writing the children names

SUMMARY

▪ In this section, we discussed the following:

▪ Assignment and comparison of objects

▪ Using objects as parameters and return values

▪ Private methods and public variables

▪ Composite classes (arrays of objects, nested objects)

▪ Default constructors

▪ Copy constructors

▪ Static constants

CSCE 2004 - Programming Foundations I 97

CLASSES

PART 5

ADVANCED CLASS EXAMPLES

ADVANCED CLASS

EXAMPLES

▪ Consider the problem of creating a 2D platform video

game like Donkey Kong or Super Mario Bros

▪ We need to know the location of players on the screen

▪ We need geometric models for platforms and objects

▪ We need some way to store Points, Lines and Polygons

▪ We can use a collection of classes to store this geometric

information and implement operations on this data

▪ These classes will demonstrate many of the advanced

features discussed in the previous section

CSCE 2004 - Programming Foundations I 99

POINT CLASS

▪ What data do we need to store?

▪ For a 2D point we need the (x,y) coordinates

▪ What operations do we need to implement?

▪ Basic get and set methods

▪ Some way to print or display points

▪ Distance between two points

▪ Geometric transformations (translate, rotate, scale)

CSCE 2004 - Programming Foundations I 100

POINT CLASS

class Point

{

public:

Point();

Point(const Point &p);

~Point();

void Set(const float X, const float Y);

void Get(float &X, float &Y) const;

void Print() const;

…

CSCE 2004 - Programming Foundations I 101

Standard constructor,

copy constructor and

destructor methods

Get and set methods

let user access (x, y)

coordinates of Point

POINT CLASS

…

float Distance(Point &p) const;

void Translate(const float deltaX, const float deltaY);

void Rotate(const float angle);

void Scale(const float scale);

private:

float x, y;

};

CSCE 2004 - Programming Foundations I 102

Geometric operations

for Point objects

Coordinates of Point

POINT CLASS

Point::Point()

{

x = 0;

y = 0;

}

Point::Point(const Point &p)

{

x = p.x;

y = p.y;

}

CSCE 2004 - Programming Foundations I 103

Copy constructor method

Constructor method

POINT CLASS

void Point::Set(const float X, const float Y)

{

x = X;

y = Y;

}

void Point::Get(float &X, float &Y) const

{

X = x;

Y = y;

}

void Point::Print() const

{

cout << "(" << x << "," << y << ")";

}

CSCE 2004 - Programming Foundations I 104

Print method

Set and Get methods

POINT CLASS

float Point::Distance(Point &p) const

{

float dx = x - p.x;

float dy = y - p.y;

return sqrt(dx*dx + dy*dy);

}

void Point::Translate(const float deltaX, const float deltaY)

{

x += deltaX;

y += deltaY;

}

CSCE 2004 - Programming Foundations I 105

Translate the (x,y)

coordinates of Point

Calculate distance

between two Points

POINT CLASS

void Point::Rotate(const float angle)

{

float newX = x * cos(angle) - y * sin(angle);

float newY = x * sin(angle) + y * cos(angle);

x = newX;

y = newY;

}

void Point::Scale(const float scale)

{

x *= scale;

y *= scale;

}

CSCE 2004 - Programming Foundations I 106

Scale the (x,y)

coordinates of Point

Rotate the (x,y)

coordinates of Point

LINE CLASS

▪ What data do we need to store?

▪ Lines can be defined in terms of two Points

▪ From this, we can derive y=mx+b or Ax+By+C=0

▪ What operations do we need to implement?

▪ Basic get and set methods

▪ Some way to print or display lines

▪ Distance between points and a line

▪ Geometric transformations (translate, rotate, scale)

CSCE 2004 - Programming Foundations I 107

LINE CLASS

class Line

{

public:

Line();

Line(const Line &line);

~Line();

void Set(const Point point1, const Point point2);

void Get(Point &point1, Point &point2) const;

void Print() const;

…

CSCE 2004 - Programming Foundations I 108

Standard constructor,

copy constructor and

destructor methods

Get and set methods

let user access two

Points that define Line

LINE CLASS

…

float Distance(Point &point) const;

void Translate(const float deltaX, const float deltaY);

void Rotate(const float angle);

void Scale(const float scale);

private:

Point p1, p2;

};

CSCE 2004 - Programming Foundations I 109

Geometric operations

for Line objects

The two Points that

define the Line equation

store (x1,y1) (x2,y2)

LINE CLASS

Line::Line()

{

// Point constructors are called automatically

}

Line::Line(const Line &line)

{

// Copy two Points that define Line

p1 = line.p1;

p2 = line.p2;

}

CSCE 2004 - Programming Foundations I 110

LINE CLASS

void Line::Set(const Point point1, const Point point2)

{

// Copy parameters into private variables

p1 = point1;

p2 = point2;

}

void Line::Get(Point &point1, Point &point2) const

{

// Copy private variables into parameters

point1 = p1;

point2 = p2;

}

CSCE 2004 - Programming Foundations I 111

LINE CLASS

void Line::Print() const

{

float x1, y1, x2, y2;

p1.Get(x1,y1);

p2.Get(x2,y2);

float A = (y2-y1);

float B = (x1-x2);

float C = - x2*A - y2*B;

cout << A << "x + " << B << "y + " << C << " = 0\n";

}

CSCE 2004 - Programming Foundations I 112

Get (x,y) coordinates

for both Points on line

Print line using

Ax+By+C=0 format

LINE CLASS

void Line::Translate(const float deltaX, const float deltaY)

{ p1.Translate(deltaX, deltaY);

p2.Translate(deltaX, deltaY);

}

void Line::Rotate(const float angle)

{ p1.Rotate(angle);

p2.Rotate(angle);

}

void Line::Scale(const float scale)

{ p1.Scale(scale);

p2.Scale(scale);

}

CSCE 2004 - Programming Foundations I 113

Call methods in the

Point class to perform

geometric operations

on Line objects

POLYGON CLASS

▪ What data do we need to store?

▪ A polygon object is a closed sequence of line segments

▪ We can define a polygon using an array of Points

▪ What operations do we need to implement?

▪ Basic get and set methods

▪ Some way to print or display points

▪ Geometric transformations (translate, rotate, scale)

CSCE 2004 - Programming Foundations I 114

POLYGON CLASS

class Polygon

{

public:

Polygon();

Polygon(const Polygon &poly);

~Polygon();

void Set(int index, const Point point);

void Get(int index, Point &point) const;

void Print() const;

…

CSCE 2004 - Programming Foundations I 115

Standard constructor,

copy constructor and

destructor methods

Get and set methods

let user access each

Point on polygon

POLYGON CLASS

…

void Translate(const float deltaX, const float deltaY);

void Rotate(const float angle);

void Scale(const float scale);

private:

static const int MAX_POINT_COUNT = 10;

Point point_array[MAX_POINT_COUNT];

int point_count;

};

CSCE 2004 - Programming Foundations I 116

Geometric operations

for Polygon objects

An array of Points is used

to define Polygon object

Number of Points that

make up this Polygon

POLYGON CLASS

Polygon::Polygon()

{

// Set Point count to zero

point_count = 0;

}

Polygon::Polygon(const Polygon &poly)

{

// Copy Point information

point_count = poly.point_count;

for (int index = 0; index <= point_count; index++)

point_array[index] = poly.point_array[index];

}

CSCE 2004 - Programming Foundations I 117

POLYGON CLASS

void Polygon::Set(int index, const Point point)

{

// Copy parameters into private variables

if ((index >= 0) && (index < MAX_POINT_COUNT))

{

point_array[index] = point;

if (point_count < index)

point_count = index;

}

}

CSCE 2004 - Programming Foundations I 118

Updates point_count as

Points are added to the

private point_array

POLYGON CLASS

void Polygon::Get(int index, Point &point) const

{

// Copy private variables into parameters

if ((index >= 0) && (index < point_count))

point = point_array[index];

}

CSCE 2004 - Programming Foundations I 119

Checks that index is

within valid range

before returning Point

POLYGON CLASS

void Polygon::Print() const

{

for (int index = 0; index <= point_count; index++)

{

cout << "Point[" << index << "]=";

point_array[index].Print();

cout << endl;

}

cout << endl;

}

CSCE 2004 - Programming Foundations I 120

Call the Point print

method to display the

(x,y) coordinates of

point_array[index]

Loop over all Points

POLYGON CLASS

void Polygon::Translate(const float deltaX, const float deltaY)

{

for (int index = 0; index <= point_count; index++)

point_array[index].Translate(deltaX, deltaY);

}

void Polygon::Rotate(const float angle)

{

for (int index = 0; index <= point_count; index++)

point_array[index].Rotate(angle);

}

CSCE 2004 - Programming Foundations I 121

Call Point methods to

translate or rotate the

(x,y) coordinates of

point_array[index]

Loop over all Points

COMPILING WITH

MAKEFILES

▪ It is common for applications with several classes to break

the implementation into different files

▪ Easier for a group of programmers to work together

▪ Put all of the class headers into "class_name.h" files

▪ Put all of the method implementations in "class_name.cpp"

▪ Put the main program that call the classes in "main.cpp"

▪ #include "class_name.h" at top of files that use the class

▪ When we do this, we can compile multiple files at one time

▪ g++ -Wall -o main.exe main.cpp class_name.cpp

CSCE 2004 - Programming Foundations I 122

COMPILING WITH

MAKEFILES

▪ We can also recompile each source file separately and

then combine their object files

▪ g++ -Wall -c class_name.cpp (produces class_name.o)

▪ g++ -Wall -c main.cpp (produces main.o)

▪ g++ -o main.exe main.o class_name.o

▪ If we only recompile source files that have changed since

the last compile we can greatly reduce compile time

▪ The program "make" reads commands from a "makefile" to

do this clever form of compilation

CSCE 2004 - Programming Foundations I 123

COMPILING WITH

MAKEFILES

▪ Makefiles have "rule blocks" with following syntax:

▪ Comments starting with a # character

Example:

compile class_name.cpp

CSCE 2004 - Programming Foundations I 124

COMPILING WITH

MAKEFILES

▪ Makefiles have "rule blocks" with following syntax:

▪ Comments starting with a # character

▪ Output file name followed by colon character

Example:

compile class_name.cpp

class_name.o :

CSCE 2004 - Programming Foundations I 125

COMPILING WITH

MAKEFILES

▪ Makefiles have "rule blocks" with following syntax:

▪ Comments starting with a # character

▪ Output file name followed by colon character

▪ List of input files needed to create the output file

Example:

compile class_name.cpp

class_name.o : class_name.cpp class_name.h

CSCE 2004 - Programming Foundations I 126

COMPILING WITH

MAKEFILES

▪ Makefiles have "rule blocks" with following syntax:

▪ Comments starting with a # character

▪ Output file name followed by colon character

▪ List of input files needed to create the output file

▪ Command to compile inputs and create output

▪ This line MUST be indented with a TAB character

Example:

compile class_name.cpp

class_name.o : class_name.cpp class_name.h

g++ -c class_name.cpp

CSCE 2004 - Programming Foundations I 127

COMPILING WITH

MAKEFILES

▪ The "rule blocks" are executed based on:

▪ Rule position

▪ The first rule in the makefile is executed first

▪ Other rules are ONLY executed if they are needed by the

first rule to create missing intermediate files

▪ Time stamps

▪ Look at the time stamp on input files

▪ Look at the time stamp on output file

▪ Execute command if input files are NEWER than output file

CSCE 2004 - Programming Foundations I 128

MAKEFILE EXAMPLE

simple way to create main.exe

main.exe: class_name.cpp main.cpp

g++ -Wall -o main.exe class_name.cpp main.cpp

CSCE 2004 - Programming Foundations I 129

• Make will compare the time stamps of

main.exe to both source files

• If either source file is newer than main.exe the

Make will execute compile rule

• The g++ command will compile both source

files to create main.exe

MAKEFILE EXAMPLE

fancy way to create main.exe

main.exe: class_name.o main.o

g++ -Wall -o main.exe class_name.o main.o

compile class_name.cpp

class_name.o: class_name.cpp class_name.h

g++ -Wall -c class_name.cpp

compile main.cpp

main.o: main.cpp class_name.h

g++ -Wall -c main.cpp

CSCE 2004 - Programming Foundations I 130

Start first rule: compare

the time stamps on input

and output files

MAKEFILE EXAMPLE

fancy way to create main.exe

main.exe: class_name.o main.o

g++ -Wall -o main.exe class_name.o main.o

compile class_name.cpp

class_name.o: class_name.cpp class_name.h

g++ -Wall -c class_name.cpp

compile main.cpp

main.o: main.cpp class_name.h

g++ -Wall -c main.cpp

CSCE 2004 - Programming Foundations I 131

If class_name.o does not

exist (or is out of date) we

execute this rule

MAKEFILE EXAMPLE

fancy way to create main.exe

main.exe: class_name.o main.o

g++ -Wall -o main.exe class_name.o main.o

compile class_name.cpp

class_name.o: class_name.cpp class_name.h

g++ -Wall -c class_name.cpp

compile main.cpp

main.o: main.cpp class_name.h

g++ -Wall -c main.cpp

CSCE 2004 - Programming Foundations I 132

If main.o does not exist

(or is out of date) we

execute this rule

MAKEFILE EXAMPLE

fancy way to create main.exe

main.exe: class_name.o main.o

g++ -Wall -o time.exe class_name.o main.o

compile class_name.cpp

class_name.o: class_name.cpp class_name.h

g++ -Wall -c class_name.cpp

compile main.cpp

main.o: main.cpp class_name.h

g++ -Wall -c main.cpp

CSCE 2004 - Programming Foundations I 133

Finish first rule:

compile input files to

create output file

SUMMARY

▪ In this section, we described three advanced classes

▪ The Point class stores (x,y) coordinates

▪ The Line class is defined using two Point objects

▪ The Polygon class is defined using an array of Points

▪ The geometric operations in the Line class and the

Polygon class call methods in the Point class

▪ We also described how makefiles can be used

▪ Break class definition and implementation into multiple files

▪ Write makefile rules to compile each class separately

▪ Write makefile rule to combine to create output program

CSCE 2004 - Programming Foundations I 134

CLASSES

PART 6

OPERATOR OVERLOADING

OPERATOR

OVERLOADING

▪ Operator overloading in C++ allows the programmer to

give new meanings to predefined C++ operators

▪ This is done by creating class methods whose "name" is

given by one of the predefined operators in C++

▪ For example, the C++ string class has defined "+" to

perform string concatenation instead of addition

▪ Programmers are allowed to "overload" the meaning of

almost all C++ operators

▪ arithmetic operations (+, -, *, /, %)

▪ comparison operations (<, <=, >, >=, ==, !=)

▪ input / output operations (>>, <<)

CSCE 2004 - Programming Foundations I 136

OPERATOR

OVERLOADING

▪ The syntax for operator overloading is a little tricky

▪ When we are defining a method we use the keyword

"operator" followed by the operator we wish to use

▪ For example, we can replace the "add" method with

"operator +" and replace "subtract" with "operator -"

▪ In order to build classic looking arithmetic expressions,

we need to use the following parameter passing rules

▪ Only pass in ONE value parameter of class_type

▪ Return a value of class_type after doing operation

CSCE 2004 - Programming Foundations I 137

COMPLEX CLASS

▪ In the "Complex" class we can define (+, -, *, /) methods to
add, subtract, multiply and divide complex numbers

Complex x(1,0), y(1,2), z(2,-1); // y = 1+2i

Complex sum = x + y; // sum = x.add(y)

Complex product = y * z; // prod = y.mult(z)

▪ The implementation of each of these operations must
follow the traditional rules for complex arithmetic

(a + bi) + (c + di) = (a+c) + (b+d)i

(a + bi) - (c + di) = (a-c) + (b-d)i

(a + bi) * (c + di) = (ac-bd) + (ac+bd)i

CSCE 2004 - Programming Foundations I 138

COMPLEX CLASS

class Complex

{

public:

Complex(float re = 0.0, float im = 0.0);

Complex(const Complex & num);

~Complex();

Complex operator +(const Complex num) const;

Complex operator -(const Complex num) const;

Complex operator *(const Complex num) const;

Complex operator /(const Complex num) const;

…

private:

float Re;

float Im;

};

CSCE 2004 - Programming Foundations I 139

Standard constructor,

copy constructor and

destructor methods

COMPLEX CLASS

class Complex

{

public:

Complex(float re = 0.0, float im = 0.0);

Complex(const Complex & num);

~Complex();

Complex operator +(const Complex num) const;

Complex operator -(const Complex num) const;

Complex operator *(const Complex num) const;

Complex operator /(const Complex num) const;

…

private:

float Re;

float Im;

};

CSCE 2004 - Programming Foundations I 140

Operator overloaded

addition,subtraction,

multiplication, division

COMPLEX CLASS

class Complex

{

public:

Complex(float re = 0.0, float im = 0.0);

Complex(const Complex & num);

~Complex();

Complex operator +(const Complex num) const;

Complex operator -(const Complex num) const;

Complex operator *(const Complex num) const;

Complex operator /(const Complex num) const;

…

private:

float Re;

float Im;

};

CSCE 2004 - Programming Foundations I 141

Private variables for the

real and imaginary parts

of complex number

COMPLEX CLASS

Complex Complex::operator + (const Complex num) const

{

Complex res;

res.Re = Re + num.Re;

res.Im = Im + num.Im;

return res;

}

CSCE 2004 - Programming Foundations I 142

We perform addition

using local variable "res"

and then return this value

COMPLEX CLASS

Complex Complex::operator - (const Complex num) const

{

Complex res;

res.Re = Re - num.Re;

res.Im = Im - num.Im;

return res;

}

CSCE 2004 - Programming Foundations I 143

We perform subtraction

using local variable "res"

and then return this value

COMPLEX CLASS

Complex Complex::operator * (const Complex num) const

{

Complex res;

res.Re = Re * num.Re - Im * num.Im;

res.Im = Re * num.Im + Im * num.Re;

return res;

}

CSCE 2004 - Programming Foundations I 144

We perform multiplication

using local variable "res"

and then return this value

POLYNOMIAL CLASS

▪ In the "Polynomial" class we can define methods to add,
subtract, multiply and divide polynomial equations

Polynomial a(4,3,2), b(1,2), c(3,4,5); // a = 4+3x+2x2

Polynomial product = a * b;

Polynomial sum = b + c;

▪ The implementation of each of these operations must
follow the traditional rules for polynomial arithmetic

(ax2 + bx + c) + (dx2 + ex + f) = (a+d)x2 + (b+e)x + (c+f)

(ax2 + bx + c) - (dx2 + ex + f) = (a-d)x2 + (b-e)x + (c-f)

(bx + c) * (ex + f) = (be)x2 + (bf+ce)x + cf

CSCE 2004 - Programming Foundations I 145

POLYNOMIAL CLASS

class Polynomial

{

public:

Polynomial (float p0 = 0.0, float p1 = 0.0, float p2 = 0.0, float p3 = 0.0);

Polynomial (const Polynomial & p);

~Polynomial ();

Polynomial operator +(const Polynomial p) const;

Polynomial operator -(const Polynomial p) const;

Polynomial operator *(const Polynomial p) const;

Polynomial operator /(const Polynomial p) const;

…

private:

float coeff[max_degree];

int degree;

};

CSCE 2004 - Programming Foundations I 146

Standard constructor,

copy constructor and

destructor methods

POLYNOMIAL CLASS

class Polynomial

{

public:

Polynomial (float p0 = 0.0, float p1 = 0.0, float p2 = 0.0, float p3 = 0.0);

Polynomial (const Polynomial & p);

~Polynomial ();

Polynomial operator +(const Polynomial p) const;

Polynomial operator -(const Polynomial p) const;

Polynomial operator *(const Polynomial p) const;

Polynomial operator /(const Polynomial p) const;

…

private:

float coeff[max_degree];

int degree;

};

CSCE 2004 - Programming Foundations I 147

Operator overloaded

addition,subtraction,

multiplication, division

POLYNOMIAL CLASS

class Polynomial

{

public:

Polynomial (float p0 = 0.0, float p1 = 0.0, float p2 = 0.0, float p3 = 0.0);

Polynomial (const Polynomial & p);

~Polynomial ();

Polynomial operator +(const Polynomial p) const;

Polynomial operator -(const Polynomial p) const;

Polynomial operator *(const Polynomial p) const;

Polynomial operator /(const Polynomial p) const;

…

private:

float coeff[max_degree];

int degree;

};

CSCE 2004 - Programming Foundations I 148

Private variables store an

array of polynomial

coefficients and the degree

POLYNOMIAL CLASS

Polynomial::Polynomial(float p0, float p1, float p2, float p3)

{

if (p3 != 0) degree = 3;

else if (p2 != 0) degree = 2;

else if (p1 != 0) degree = 1;

else degree = 0;

for (int d = 0; d < max_degree; d++)

coeff[d] = 0;

coeff[3] = p3;

coeff[2] = p2;

coeff[1] = p1;

coeff[0] = p0;

}

CSCE 2004 - Programming Foundations I 149

Store the polynomial coefficients

Store the polynomial degree

POLYNOMIAL CLASS

Polynomial Polynomial::operator + (const Polynomial p)

{

Polynomial res;

if (degree >= p.degree)

res.degree = degree;

else

res.degree = p.degree;

for (int d = 0; d <= res.degree; d++)

res.coeff[d] = coeff[d] + p.coeff[d];

return res;

}

CSCE 2004 - Programming Foundations I 150

Add the polynomial coefficients

Calculate degree of output polynomial

POLYNOMIAL CLASS

Polynomial Polynomial::operator - (const Polynomial p)

{

Polynomial res;

if (degree >= p.degree)

res.degree = degree;

else

res.degree = p.degree;

for (int d = 0; d <= res.degree; d++)

res.coeff[d] = coeff[d] - p.coeff[d];

return res;

}

CSCE 2004 - Programming Foundations I 151

Subtract the polynomial coefficients

Calculate degree of output polynomial

POLYNOMIAL CLASS

Polynomial Polynomial::operator * (const Polynomial p)

{

Polynomial res;

res.degree = degree + p.degree;

for (int d = 0; d <= res.degree; d++)

res.coeff[d] = 0;

for (int da = 0; da <= degree; da++)

for (int db = 0; db <= p.degree; db++)

res.coeff[da + db] += coeff[da] * p.coeff[db];

return res;

}

CSCE 2004 - Programming Foundations I 152

Multiply the polynomial coefficients

Calculate degree of output polynomial

Initialize output polynomial coefficients

SUMMARY

▪ In this section, we described the syntax for implementing

operator overloading in C++

▪ Methods are named "operator +" instead of "add"

▪ We illustrated operator overloading with two examples:

▪ The Complex class stores the (real, imaginary) parts of a

complex number in private variables

▪ The Polynomial class stores the coefficients and degree of

a polynomial equation in private variables

▪ Similar classes can be used to implement other

mathematical objects (Rationals, Matrices, etc.)

CSCE 2004 - Programming Foundations I 153

	Slide 1: CLASSES
	Slide 2: overview
	Slide 3: overview
	Slide 4: overview
	Slide 5: OVERVIEW
	Slide 6: classes
	Slide 7: Defining classes
	Slide 8: Defining classes
	Slide 9: Defining classes
	Slide 10: Defining classes
	Slide 11: Defining classes
	Slide 12: Defining classes
	Slide 13: Defining classes
	Slide 14: Defining classes
	Slide 15: Defining classes
	Slide 16: Defining classes
	Slide 17: Defining classes
	Slide 18: Defining classes
	Slide 19: Defining classes
	Slide 20: Defining classes
	Slide 21: Defining classes
	Slide 22: Defining classes
	Slide 23: Defining classes
	Slide 24: Defining classes
	Slide 25: Defining classes
	Slide 26: Defining classes
	Slide 27: summary
	Slide 28: classes
	Slide 29: Implementing classes
	Slide 30: Implementing classes
	Slide 31: Implementing classes
	Slide 32: Implementing classes
	Slide 33: Implementing classes
	Slide 34: Implementing classes
	Slide 35: Implementing classes
	Slide 36: Implementing classes
	Slide 37: Implementing classes
	Slide 38: Implementing classes
	Slide 39: Implementing classes
	Slide 40: Implementing classes
	Slide 41: Implementing classes
	Slide 42: Implementing classes
	Slide 43: Implementing classes
	Slide 44: Implementing classes
	Slide 45: Using classes
	Slide 46: Using classes
	Slide 47: Using classes
	Slide 48: Using classes
	Slide 49: Using classes
	Slide 50: Using classes
	Slide 51: Using classes
	Slide 52: Using classes
	Slide 53: Using classes
	Slide 54: summary
	Slide 55: classes
	Slide 56: Simple class examples
	Slide 57: Simple class examples
	Slide 58: Student class
	Slide 59: Student class
	Slide 60: Student class
	Slide 61: Student class
	Slide 62: Student class
	Slide 63: Student class
	Slide 64: Student class
	Slide 65: Student class
	Slide 66: Linear class
	Slide 67: Linear class
	Slide 68: Linear class
	Slide 69: Linear class
	Slide 70: Linear class
	Slide 71: Linear class
	Slide 72: Linear class
	Slide 73: Linear class
	Slide 74: Linear class
	Slide 75: Linear class
	Slide 76: Linear class
	Slide 77: Linear class
	Slide 78: Linear class
	Slide 79: summary
	Slide 80: CLASSES
	Slide 81: Advanced classes
	Slide 82: Advanced classes
	Slide 83: Advanced classes
	Slide 84: Advanced classes
	Slide 85: Advanced classes
	Slide 86: Advanced classes
	Slide 87: Advanced classes
	Slide 88: Default constructor
	Slide 89: Default constructor
	Slide 90: Default constructor
	Slide 91: Copy constructor
	Slide 92: Copy constructor
	Slide 93: Copy constructor
	Slide 94: Copy constructor
	Slide 95: Static constants
	Slide 96: Static constants
	Slide 97: summary
	Slide 98: CLASSES
	Slide 99: Advanced class examples
	Slide 100: Point class
	Slide 101: Point class
	Slide 102: Point class
	Slide 103: Point class
	Slide 104: Point class
	Slide 105: Point class
	Slide 106: Point class
	Slide 107: Line class
	Slide 108: Line class
	Slide 109: Line class
	Slide 110: Line class
	Slide 111: Line class
	Slide 112: Line class
	Slide 113: Line class
	Slide 114: Polygon class
	Slide 115: Polygon class
	Slide 116: Polygon class
	Slide 117: Polygon class
	Slide 118: Polygon class
	Slide 119: Polygon class
	Slide 120: Polygon class
	Slide 121: Polygon class
	Slide 122: Compiling with makefiles
	Slide 123: Compiling with makefiles
	Slide 124: Compiling with makefiles
	Slide 125: Compiling with makefiles
	Slide 126: Compiling with makefiles
	Slide 127: Compiling with makefiles
	Slide 128: Compiling with makefiles
	Slide 129: Makefile example
	Slide 130: Makefile example
	Slide 131: Makefile example
	Slide 132: Makefile example
	Slide 133: Makefile example
	Slide 134: summary
	Slide 135: CLASSES
	Slide 136: Operator overloading
	Slide 137: Operator overloading
	Slide 138: Complex class
	Slide 139: Complex class
	Slide 140: Complex class
	Slide 141: Complex class
	Slide 142: Complex class
	Slide 143: Complex class
	Slide 144: Complex class
	Slide 145: Polynomial class
	Slide 146: Polynomial class
	Slide 147: Polynomial class
	Slide 148: Polynomial class
	Slide 149: Polynomial class
	Slide 150: Polynomial class
	Slide 151: Polynomial class
	Slide 152: Polynomial class
	Slide 153: summary

