
POINTERS

OVERVIEW

OVERVIEW

▪ Pointers are special variables that can contain the memory

address of another variable

▪ We can use pointers to access and modify variables

▪ Special C++ syntax to get address and follow pointer

▪ We can also create dynamic data structures that grow and

shrink with the needs of an application

▪ Special C++ commands to allocate and release memory

CSCE 2004 - Programming Foundations I 2

OVERVIEW

Operating system code

Operating system data

Program code

Program data

Run time stack

Empty space

Run time heap

CSCE 2004 - Programming Foundations I 3

▪ Memory on a computer can be viewed as a very

long array divided into seven parts

The operating system keeps track

of all of the programs that are

running on the computer

OVERVIEW

Operating system code

Operating system data

Program code

Program data

Run time stack

Empty space

Run time heap

CSCE 2004 - Programming Foundations I 4

▪ Memory on a computer can be viewed as a very

long array divided into seven parts

Each program is given a piece of

memory to store the code and

variables

OVERVIEW

Operating system code

Operating system data

Program code

Program data

Run time stack

Empty space

Run time heap

CSCE 2004 - Programming Foundations I 5

▪ Memory on a computer can be viewed as a very

long array divided into seven parts

The stack and heap grow and

shrink in size as program runs

providing memory for variables

OVERVIEW

▪ Lesson objectives:

▪ Learn the basic syntax for pointer variables

▪ Learn how to use pointers to access/modify variables

▪ Learn about the run time stack and run time heap

▪ Learn how to allocate and release dynamic memory

▪ Study example program with dynamic memory

▪ Study example class with dynamic memory

CSCE 2004 - Programming Foundations I 6

POINTERS

PART 1

POINTER BASICS

POINTER VARIABLES

▪ A pointer variable allows us to store the memory address

of another variable in the program

▪ We can them use this pointer variable to access and

modify the original variable

▪ We can also use pointer variables to create dynamic data

structures that grow/shrink with needs of program

▪ Pointers can only “point to” variables of one data type

▪ An integer pointer can store address of an integer variable

▪ A float pointer can store address of a float variable

▪ A char pointer can store address of a char variable

CSCE 2004 - Programming Foundations I 8

POINTER VARIABLES

▪ We declare pointer variables using a * operator between

he data_type and the variable_name

▪ int * ptr1 – will declare an integer pointer

▪ float * ptr2 – will declare a float pointer

▪ char * ptr3 – will declare a char pointer

▪ It does not matter where the * is placed

▪ int* ptr1 – it can go next to the data_type

▪ float *ptr2 – it can go next to the variable_name

▪ char * ptr3 – it can go half way in between

CSCE 2004 - Programming Foundations I 9

ADDRESS OPERATOR

▪ We need some way to obtain the address of variables

▪ The address operator & gives address of following variable

▪ We can store this address in a pointer variable

int a = 42;

int b = 17;

int *aptr = &a;

int *bptr = &b;

CSCE 2004 - Programming Foundations I 10

aptr now contains address of a

bptr now contains address of b

ADDRESS OPERATOR

▪ Every time we run a program, the operating system will

give our program a different portion of memory to run in

▪ This means that the memory addresses we get with the

address operator could be different every time!

int a = 42;

int b = 17;

int *aptr = &a;

int *bptr = &b;

CSCE 2004 - Programming Foundations I 11

First time we run program aptr = 1000

Next time we run program aptr = 1234

We can not predict this value

ADDRESS OPERATOR

▪ Variables are assigned to consecutive memory locations

▪ The differences between variable memory addresses will

be the same every time we run the program

int a = 42;

int b = 17;

int *aptr = &a;

int *bptr = &b;

CSCE 2004 - Programming Foundations I 12

Assume aptr = 1000, then bptr = 1004

The difference will always be 4

ADDRESS OPERATOR

▪ We can print addresses just like any other variable

cout << aptr << endl;

cout << &b << endl;

▪ Memory addresses are normally printed in hexadecimal

▪ Starts with “0x” to indicate value is in hexadecimal

▪ Followed by N hexadecimal digits (0123456789abcdef)

▪ Linux uses 12 hexadecimal digits (48-bits) for addresses

Eg: 0x7fff541aec3c

0x7fff541aec38

CSCE 2004 - Programming Foundations I 13

INDIRECTION

OPERATOR

▪ We need some way to “follow pointers” to variables

▪ The indirection operator * is used to do this

▪ When we put * in front of a pointer variable we can access

or modify the variable at that memory location

float n = 3.14;

float *ptr = &n;

*ptr = 1.23;

cout << n << endl; // will print 1.23

CSCE 2004 - Programming Foundations I 14

*ptr is another way to access the

variable n, so now n equals 1.23

INDIRECTION

OPERATOR

▪ It is possible to have multiple pointers to one variable

▪ We must assign one pointer value (address) to another

pointer variable of the same type

float n = 3.14;

float *ptr = &n;

float *ptr2 = ptr;

*ptr2 = 8.76;

*ptr = 5.67;

n = 1.41;

CSCE 2004 - Programming Foundations I 15

We now have three ways to

change the value of variable n

ARRAYS AND

POINTERS

▪ Arrays and pointers are actually very similar in C++

▪ When we declare “int data[10]” the variable “data” stores

the address of the first array element

▪ This means that the indirection operator * can be used with

the array name to access variables in an array

int data[10];

data[0] = 24;

*data = 42;

data[1] = 17;

*data = 72

CSCE 2004 - Programming Foundations I 16

This will store 42 in data[0]

This will store 24 in data[0]

This will store 72 in data[0]

This will store 17 in data[1]

ARRAYS AND

POINTERS

▪ We can also use array subscripts [] and pointer variables

to access and modify variables

▪ We have to be very careful with array bounds

int data[10];

int *ptr = data;

ptr[3] = 77;

ptr[12] = 0;

ptr[-3] = 17;

CSCE 2004 - Programming Foundations I 17

This will store 77 in data[3]

ptr will now point at data array

Both will go out of array

bounds and cause bugs

ARRAYS AND

POINTERS

▪ It is possible to do some very sneaky programming using

arrays and pointers

▪ When we add one to a pointer variable, we point to

adjacent variable of the same data type

▪ This pointer arithmetic gives us another way to access

variables in an array (very ugly and not recommended)

int data[10];

int *ptr = data;

*(ptr+3) = 77;

CSCE 2004 - Programming Foundations I 18

This is the same as data[3] = 77;

SUMMARY

▪ In this section, we went over the syntax for declaring and

using pointers in C++

▪ We declare pointer variables by adding * between the

data_type and variable_name

▪ The address operator & is used to get the current memory

address of a variable

▪ The indirection operator * is used to “follow” a pointer and

access the variable at that address

▪ Arrays and pointers are similar in several ways and can be

accessed using similar notation

CSCE 2004 - Programming Foundations I 19

POINTERS

PART 2

DYNAMIC DATA STRUCTURES

RUN TIME STACK

▪ The run time stack is used to give a program space for

function parameters and local variables

▪ The stack “grows” in size for every function call

▪ Growth size depends on the number and types of the

parameters and local variables

▪ The stack “shrinks” in size when the function finishes

▪ If there is infinite recursion in a program, the stack will use

up all available empty space and the program will die with

a “stack overflow” error

CSCE 2004 - Programming Foundations I 21

RUN TIME STACK

▪ Consider the following program

int process(int number)

{

int result = (number + 5) / 2;

return result;

}

int main()

{

int value = process(17);

cout << value;

return 0;

}

CSCE 2004 - Programming Foundations I 22

The process function has one

integer parameter and one integer

variable and needs 8 bytes

RUN TIME STACK

▪ Consider the following program

int process(int number)

{

int result = (number + 5) / 2;

return result;

}

int main()

{

int value = process(17);

cout << value;

return 0;

}

CSCE 2004 - Programming Foundations I 23

The main function has one integer

variable and needs 4 bytes

RUN TIME STACK

▪ When the program starts, the stack grows to contain

space for variables in the “main” function

CSCE 2004 - Programming Foundations I 24

value: ?

The code in the main function can

only “see” variables here

RUN TIME STACK

▪ When the function “process” is called, the stack grows to

contain space for variables in this function

CSCE 2004 - Programming Foundations I 25

value: ?

number: 17

result: 11

The code in the process function

can only “see” variables here

RUN TIME STACK

▪ When the function “process” returns its result, we no

longer need the space for these local variables, so the

stack shrinks in size

CSCE 2004 - Programming Foundations I 26

value: 11

RUN TIME HEAP

▪ The run time heap is used to give a program space for

dynamic variables

▪ The user can “allocate” space on the heap for a variable

▪ The size of the variable can be decided at run time to

exactly meet the needs of the application

▪ The user must “release” space to the heap when finished

using the dynamic variable

▪ If space is not returned properly, a program can have a

“memory leak” and may run out of space and die

CSCE 2004 - Programming Foundations I 27

DYNAMIC MEMORY

ALLOCATION

▪ The “new” command allocates memory

▪ We allocate space for one variable using “new data_type”

▪ This will return the address of the allocated memory

▪ We use the indirection operator * to access this variable

float *ptr;

ptr = new float;

*ptr = 42;

CSCE 2004 - Programming Foundations I 28

DYNAMIC MEMORY

ALLOCATION

▪ The “new” command can also allocate space for arrays

▪ We have to specify the data_type

▪ We also have to specify how much space to allocate

▪ The syntax is similar to how we declare arrays

▪ We can access this dynamic memory using [] notation

int * ptr;

ptr = new int[10]; // work same “int ptr[10]”

for (int i=0; i<10; i++)

ptr[i] = 42 + i;

CSCE 2004 - Programming Foundations I 29

RELEASING DYNAMIC

MEMORY

▪ The “delete” command releases memory

▪ When we are finished using a dynamic variable we must
release its memory using “delete pointer_name”

▪ The operating system will then add this memory to the
“empty space” between the stack and the heap

float *ptr;

ptr = new float;

*ptr = 42;

…

delete ptr;

ptr = NULL;

CSCE 2004 - Programming Foundations I 30

You should never attempt to use *ptr

after you have called delete because

you no longer “own” this memory

RELEASING DYNAMIC

MEMORY

▪ The “delete []” command also releases memory

▪ When we are finished using a dynamic array we must

release its memory using “delete [] pointer_name”

▪ The operating system will then add this memory to the

“empty space” between the stack and the heap

int * ptr;

ptr = new int[10];

…

delete [] ptr;

ptr = NULL;

CSCE 2004 - Programming Foundations I 31

You should never attempt to use ptr[i]

after you have called delete because

you no longer “own” this memory

SAMPLE PROGRAM

▪ Assume we are given an ascii file containing an unknown
number of integer values and we want to sort this data

▪ We do not want to “guess” the size of data array

▪ Guess too high → waste memory space

▪ Guess too low → program fails to work properly

▪ Our algorithm:

▪ Read input file to count how many values are in file

▪ Allocate a dynamic array large enough for this data

▪ Read data from input file into the dynamic array

▪ Perform sorting algorithm on data in array

▪ Print sorted data and release memory

CSCE 2004 - Programming Foundations I 32

SAMPLE PROGRAM

// Read input file to count values

ifstream din;

din.open("numbers.txt");

int count = 0;

int number = 0;

while (din >> number)

count++;

din.close();

CSCE 2004 - Programming Foundations I 33

This read operation returns “true” if

data is read correctly and “false”

when we reach the end of file

SAMPLE PROGRAM

// Allocate dynamic array

int * data;

data = new int[count];

CSCE 2004 - Programming Foundations I 34

The count variable was initialized

above so we can allocate exactly the

right size array to process this data

SAMPLE PROGRAM

// Read data into dynamic array

din.open("numbers.txt");

for (int i=0; i<count; i++)

din >> data[i];

din.close();

CSCE 2004 - Programming Foundations I 35

We can read data in a for loop without

checking for end of file because we

know exactly how many values there

are in the input file

SAMPLE PROGRAM

// Sort data using bubble sort

for (int i=0; i<count; i++)

for (int j=1; j<count; j++)

if (data[j-1] > data[j])

{

int temp = data[j-1];

data[j-1] = data[j];

data[j] = temp;

}

CSCE 2004 - Programming Foundations I 36

SAMPLE PROGRAM

// Print sorted data and release memory

for (int i=0; i<count; i++)

cout << data[i] << " ";

cout << endl;

delete [] data;

CSCE 2004 - Programming Foundations I 37

We are finished with the data

array so we can release this

memory to the “free space”

SUMMARY

▪ The run time stack is used for variables in functions

▪ Grows and shrinks as we call functions and return

▪ The run time heap is used for dynamic variables

▪ Grows and shrinks as we allocate and release memory

▪ The “new” command allocates space on heap

▪ int *ptr = new int[10];

▪ The “delete” command releases memory

▪ delete [] ptr;

CSCE 2004 - Programming Foundations I 38

POINTERS

PART 3

POINTERS IN CLASSES

POINTERS IN

CLASSES

▪ Pointers and dynamic memory allocation are often used in

classes to create dynamic abstract data types (ADTs)

▪ Memory is allocated in constructor methods

▪ Memory is released in destructor methods

▪ This way the ADT can grow/shrink as needed

▪ This approach will help us avoid memory leaks

CSCE 2004 - Programming Foundations I 40

POINTERS IN

CLASSES

▪ Dynamic ADTs fall into two categories

▪ Array based

▪ Where a dynamic array grows/shrinks to store data

▪ The C++ “vector” class uses this approach

▪ Node based

▪ Where data is stored in a collection of “nodes”

▪ Pointers are used to link these nodes together

▪ “linked lists” and “binary trees” use this approach

▪ These ADTs will be studied in detail in PF2

CSCE 2004 - Programming Foundations I 41

MYARRAY CLASS

▪ The “MyArray” class demonstrates use of dynamic array

▪ The “Data” variable contains a pointer to dynamic memory

▪ The “Size” variable contains size of dynamic memory

class MyArray

{

private:

int * Data;

int Size;

…

CSCE 2004 - Programming Foundations I 42

MYARRAY CLASS

▪ Access to this memory will be provided by class methods

…

public:

MyArray(const int size = 10);

MyArray(const MyArray & array);

~MyArray();

int Get(const int index);

void Set(const int index, const int value);

void Resize(const int size);

};

CSCE 2004 - Programming Foundations I 43

CONSTRUCTOR

▪ If we want to create an ADT using a dynamic array we

must allocate memory in the constructor method

MyArray::MyArray(const int size)

{

Size = size;

Data = new int[Size];

for (int i=0; i<Size; i++)

Data[i] = 0;

}

CSCE 2004 - Programming Foundations I 44

Allocate memory

Initialize memory

COPY CONSTRUCTOR

▪ The copy constructor method for a dynamic array ADT

must allocate memory and copy array data

MyArray::MyArray(const MyArray & array)

{

Size = array.Size;

Data = new int[Size];

for (int i=0; i<Size; i++)

Data[i] = array.Data[i];

}

CSCE 2004 - Programming Foundations I 45

Allocate memory

Copy private Data

DESTRUCTOR

▪ The destructor method is automatically called when an

object is no longer “in scope” and no longer needed

MyArray::~MyArray()

{

delete [] Data;

Size = 0;

Data = NULL;

}

CSCE 2004 - Programming Foundations I 46

Setting the pointer to NULL makes it

clear to users of this class that the

array can no longer be accessed

GET METHOD

▪ To access data in the the array, we use Get method

int MyArray::Get(const int index)

{

if ((index >= 0) && (index < Size))

return Data[index];

else

return -1;

}

CSCE 2004 - Programming Foundations I 47

We perform error

checking on index before

we access the Data

GET METHOD

▪ To access data in the the array, we use Get method

bool MyArray::Get(const int index, int & value)

{

if ((index >= 0) && (index < Size))

{ value = Data[index];

return true; }

else

return false;

}

CSCE 2004 - Programming Foundations I 48

We perform error

checking on index before

we access the Data

GET METHOD

▪ To access data in the the array, we use Get method

bool MyArray::Get(const int index, int & value)

{

if ((index < 0) || (index >= Size))

return false;

value = Data[index];

return true;

}

CSCE 2004 - Programming Foundations I 49

We perform error

checking on index before

we access the Data

SET METHOD

▪ To store data in the the array, we use Set method

void MyArray::Set(const int index, const int value)

{

if ((index >= 0) && (index < Size))

Data[index] = value;

}

CSCE 2004 - Programming Foundations I 50

We perform error

checking on index before

we access the Data

RESIZE METHOD

▪ To resize the array, we must allocate a new array of

desired size and copy all of the old data into new array

void MyArray::Resize(const int size)

{

// allocate and initialize new array

int * OldData = Data;

Data = new int[size];

for (int i=0; i<size; i++)

Data[i] = 0;

CSCE 2004 - Programming Foundations I 51

We save a copy of the Data pointer

so we can still access the old data

Allocate new space and store

address in Data pointer

RESIZE METHOD

…

// copy old data into new array

for (int i=0; i<size && i<Size; i++)

Data[i] = OldData[i];

// release old memory

Size = size;

delete [] OldData;

}

CSCE 2004 - Programming Foundations I 52

This will result in data loss if the

new size is less than old Size

We return memory for the original

Data array back to the heap

USING MYARRAY

#include "MyArray.h"

int main()

{

// Create array

int size = 0;

cout << "Enter array size:";

cin >> size;

MyArray data(size);

// Set array values

for (int index = 0; index < size; index++)

data.Set(index, random() % 17);

CSCE 2004 - Programming Foundations I 53

USING MYARRAY

…

// Print array values

for (int index = 0; index < size; index++)

cout << data.Get(index) << " ";

cout << endl;

// Resize the array

cout << "Enter new array size: ";

cin >> size;

data.Resize(size);

CSCE 2004 - Programming Foundations I 54

USING MYARRAY

…

// Update array values

for (int index = 0; index < size; index++)

data.Set(index, data.Get(index) + 42);

// Print array values

for (int index = 0; index < size; index++)

cout << data.Get(index) << " ";

cout << endl;

return 0;

}

CSCE 2004 - Programming Foundations I 55

The destructor function is

called automatically here

SUMMARY

▪ The MyArray class could be extended to include a wide

variety of operations

▪ Min / Max / Mean / Standard Deviation methods

▪ Searching / Sorting / Median methods

▪ Input / Output methods

▪ Similar dynamic arrays have been created for signal

processing and image processing applications

▪ Grow to fit the size of input audio file or image

▪ Contain hundreds of specialized operations

CSCE 2004 - Programming Foundations I 56

SUMMARY

▪ Pointers and dynamic memory allocation are often used in

classes to create dynamic abstract data types (ADTs)

▪ Memory is allocated in constructor methods

▪ Memory is released in destructor methods

▪ This way the ADT can grow/shrink as needed

▪ This approach will help us avoid memory leaks

▪ In this section, we described how an “array based”

dynamic ADT can be implemented in C++

▪ In future classes you will learn about “node based”

dynamic ADTs (linked lists, binary trees, etc)

CSCE 2004 - Programming Foundations I 57

CSCE 2004 - Programming Foundations I 58

(For

Now)

	Slide 1: Pointers
	Slide 2: OVERVIEW
	Slide 3: Overview
	Slide 4: Overview
	Slide 5: Overview
	Slide 6: OVERVIEW
	Slide 7: pointers
	Slide 8: Pointer variables
	Slide 9: Pointer variables
	Slide 10: Address operator
	Slide 11: Address operator
	Slide 12: Address operator
	Slide 13: Address operator
	Slide 14: Indirection operator
	Slide 15: Indirection operator
	Slide 16: Arrays and pointers
	Slide 17: Arrays and pointers
	Slide 18: Arrays and pointers
	Slide 19: summary
	Slide 20: pointers
	Slide 21: run time stack
	Slide 22: Run time stack
	Slide 23: Run time stack
	Slide 24: Run time stack
	Slide 25: Run time stack
	Slide 26: Run time stack
	Slide 27: run time heap
	Slide 28: Dynamic memory allocation
	Slide 29: Dynamic memory allocation
	Slide 30: Releasing dynamic memory
	Slide 31: Releasing dynamic memory
	Slide 32: Sample program
	Slide 33: Sample program
	Slide 34: Sample program
	Slide 35: Sample program
	Slide 36: Sample program
	Slide 37: Sample program
	Slide 38: summary
	Slide 39: pointers
	Slide 40: Pointers in classes
	Slide 41: Pointers in classes
	Slide 42: Myarray class
	Slide 43: Myarray class
	Slide 44: constructor
	Slide 45: Copy constructor
	Slide 46: destructor
	Slide 47: Get method
	Slide 48: Get method
	Slide 49: Get method
	Slide 50: Set method
	Slide 51: Resize method
	Slide 52: Resize method
	Slide 53: Using MYARRAY
	Slide 54: Using MYARRAY
	Slide 55: Using MYARRAY
	Slide 56: summary
	Slide 57: summary
	Slide 58

